

A Study to Determine Seasonal Effects of Transporting Fish from the Snake River to Optimize a Transportation Strategy

Fish Ecology Division Northwest Fisheries Science Center NOAA Fisheries

> Benjamin Sandford <u>ben.sandford@noaa.gov</u> Steve Smith, Tiffani Marsh

NOAA FISHERIES

Dam Route Concept

Spillway/Not Detected Bypass/Detected – Transport (T) or Bypass (B) Turbine/Not Detected

What is SAR?

Smolt-to-Adult Return %

A major component of the salmonid life-cycle.

SAR Ratio

- Consider transported, bypassed migrant, and neverbypassed migrant groups
 - Question: Once fish are in the bypass system on a particular day, is it better to transport them or return them to the river?
 - T (SAR):B (SAR) > 1.0 indicates that among LGR-detected fish, those transported returned at a higher rate than those bypassed
 - Alternative standards for other questions consider never-detected group as well not discussed here

How and Why Do SARs and SAR Ratios Vary Within Migration Seasons?

- Data Caveats
- "Descriptive" Models Estimated smooth curves describing SARs for transported (T) and bypassed (B) fish through time
 - Derived curves for T:B ratios
- Results A Few Detailed, Mostly Summary

Caveats

- Analyses are:
 - Mostly based on available (adventitious) data
 - Restricted by dates of adventitious data
 - Descriptive of patterns in SARs through time within seasons
 - Based on in-river migrants that were bypassed
 - Subject to confounding of mortality and straying
 - Limited by small numbers of adult returns for some years
- Analyses are not:
 - Based on planned, designed experiments
 - Able to shed much light on transport early in the season, 2006-2012
 - Prescriptive for transport on particular dates or under particular conditions
 - Based on non-bypassed in-river migrants fish (CO), because date of passage must be known
 - Able to determine effects of transport on straying

Data

- Daily estimates of smolt-to-adult return rates (SARs)
 - Four groups of smolts for each species/rear-type/MY:
 - Smolts collected and transported from LGR and smolts bypassed there and returned to the tailrace
 - Smolts tagged upstream from LGR or at LGR
 - Count numbers of PIT-tagged smolts at LGR in each group each day (J_i)
 - Count numbers of adults that return to LGR from each daily smolt group (A_i)
 - Estimated SAR for day *i*:

$$S\hat{A}R_i = \frac{A_i}{J_i}$$

Descriptive Analysis

- Models describe patterns through time:
 - Fit a suite of Poisson log-linear regression models SAR is (potentially) a function of
 - Migration group (transported or bypassed at LGR)
 - Tagging location (upstream of LGR or at LGR)
 - Date of LGR passage (day of year)
 - Two-way and three-way interactions of above

Descriptive Analysis

- Models describe patterns through time:
 - Fit a suite of Poisson log-linear regression models SAR is (potentially) a function of
 - Migration group (transported or in-river migrant)
 - Tagging location (upstream of LGR or at LGR)
 - Date of LGR passage (day of year)
 - Two-way and three-way interactions of above
 - Model-average (qAICc) estimated SARs
 - Derive T:B ratio curves and 95% confidence envelopes

Descriptive Analysis

- Models describe patterns through time:
 - Fit a suite of Poisson log-linear regression models SAR is (potentially) a function of
 - Migration group (transported or in-river migrant)
 - Tagging location (upstream of LGR or at LGR)
 - Date of LGR passage (day of year)
 - Two-way and three-way interactions of above
 - Model-average (qAICc) estimated SARs
 - Derive T:B ratio curves and 95% confidence envelopes
 - Assess model-averaged T:B

Results

MY 2009 - Tagged Upstream of Lower

Transported or Bypassed at Lower Granite Dan

MY 2010 - Tagged Upstream of Lower

Transported or Bypassed at Lower Granite Dan

NOAA FISHERIES

Wild Chinook Salmon - Lower Granite Dam Summary of Model-Averaged T:B Values (Descriptive) Standard = 1.0 (C1; Bypassed)

Based only on Fish Tagged Above LGR

Wild Steelhead - Lower Granite Dam Summary of Model-Averaged T:B Values (Descriptive) Standard = 1.0 (C1; Bypassed)

Based only on Fish Tagged Above LGR

Based only on Fish Tagged At LGR

Next Steps

- Do All Analyses for Little Goose Dam and for Lower Monumental Dam, if sufficient data
 - Further evaluate different standards for non-transport comparison (done but not presented here)
- Ultimate goal: Identify factors that can be used to make transport/in-river strategy in real time
 - Collect data on environmental covariates (freshwater, estuary, saltwater) that might affect T:B
 - Statistically evaluate models that *explain* patterns in SAR, not just describe
 - Develop decision criteria

Acknowledgements

- Co-authors, Rich Zabel
- U.S. Army Corps of Engineers for funding
- Agencies and Staff who PIT-tagged these fish
- PTAGIS Database

Questions?

