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1 Elements of decision theory and relevance to pre-

season planning

The three basic components of the decision theory perspective are:

1. (A) Action Space: the set of choices.

e.g., di�erent pre-season management plans

2. (�) States of Nature: the set of possible `environmental conditions' representing the
randomness or uncertainty in the system in which a decision must be made

e.g., survival rates, harvest rates, migration pattern

3. (L) Loss Function: a function of the action taken and the particular state of nature

e.g., for a particular management plan (a) and particular set of environmental condi-
tions and model parameters (�), L(�,a) could be the sum of squared di�erences between
actual escapements and target escapements.

In the simplest case of a discrete �nite set of actions, say q, and states of nature, say p,
the loss table (or its negative, the payo� or utility table) is a convenient summary. Suppose
the probability of each state of nature is known, too.

Actions
States Probab. a1 a2 : : : aq
�1 Pr(�1) L(�1; a1) L(�1; a2) : : : L(�1; aq)
�2 Pr(�2) L(�2; a1) L(�2; a2) : : : L(�2; aq)
...

...
...

...
... : : :

�p Pr(�p) L(�p; a1) L(�p; a2) : : : L(�p; aq)

Two well-known decision rules are minimax and Bayes rule. Minimax says choose the
action which has the smallest maximum loss. Bayes rule selects the action which has the
smallest expected loss (risk); i.e., calculate the expected loss for each action aj

E[L(�; aj)] =
pX

i=1

Pr(�i)L(�i; aj)
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A more thorough approach is to compare the sampling distributions of the losses under
each action. For example, draw the histogram of losses under each action and compare not
only the expected loss but look also at the variation in possible losses.

Example

For example, suppose the problem is to choose one of 2 management plans with respect to
a single coho stock. The �rst plan is more conservative in terms of total harvest than the
second plan. There are 3 possible states of nature, the initial survival rates, 1%, 3%, and 5%
with probabilities 25%, 50%, and 25%, respectively. The following loss table is constructed
with losses based on a combination of the squared di�erence between predicted escapement
and desired escapement and some measure of economic loss (due to `overescapement').

Actions
States Probab. Plan 1 Plan 2

Survival=1% 25% 5,000 10,000
Survival=3% 50% 3,000 4,000
Survival=5% 25% 7,000 3,000

The minimax choice would be Plan 1 (its maximum loss is 7,000).

For the Bayesian rule, �rst calculate the expected losses under both plans:

E[L(�;Plan 1)] = (0:25� 5000) + (0:50� 3000) + (0:25� 7000) = 4500

E[L(�;Plan 2)] = (0:25� 10; 000) + (0:50� 4000) + (0:25� 3000) = 5250

The Bayes rule also picks Plan 1.

2 Three di�cult issues

2.1 Choosing loss functions

Perhaps the greatest di�culty in carrying this approach out to evaluate pre-season man-
agement plans will be to de�ne the loss function. This could be the most contentious issue
at any rate. This is directly related to the variety of management objectives Jim Norris
discussed at the March 16 meeting. Some examples:

1. Target escapement levels

2. Catch quotas per �shery

3. Catch allocation between `user' groups (US:Canada, tribal:nontribal, commercial:recreational)

One simple approach is to de�ne multiple loss functions for each of the above objectives and
evaluate management plans with respect to each loss function. A more complicated, but
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tidier approach is to develop a loss function that is a weighted combination of the di�erent
losses. For example, suppose there are k stocks and m �sheries and the two objectives are
achieving a particular escapement (Esc:Targ) and ensuring a particular total catch for each
�shery (Catch:Targ). Let the individual loss components be de�ned as:

L1(�i; aj) =
kX

r=1

(Escr(�i; aj)� Esc:Targ)2

Esc:Targ � k

L2(�i; aj) =
mX
s=1

(Catchs(�i; aj)� Catch:Targ)2

Catch:Targ �m

The reason for the divisors in each loss function is to scale the measures somewhat equally
given possibly di�erent orders of magnitude. Then the combined loss function:

L(�i; aj) = �L1(�i; aj) + (1� �)L2(�i; aj) (1)

where the managers would have to choose �.

2.2 High dimension to the uncertainty

A second di�culty is that the state of nature is very high dimensional, i.e., �i is really (�i;1,
�i;2, : : :, �i;200), say. And each component, �i;j, is often a continuous variable. For example,
considering just a single coho stock and assuming the current hierarchical SSM is `correct',
at least the following uncertainties are present:

� Initial survival rate, 
i;s

� Initial spatial distribution, 
i;�, 
i;�

� Fishery catchability coe�cients, 
q;U:S: and 
q;Canada

� Migration parameters, 
m;� and 
m;�

� Release number

� Actual �shing e�ort (compared to predicted or planned)

� `Natural' variation in the state and observation processes, the random noise wt and vt
in the following:

nt = MtStnt�1 + wt

ct = Htnt + vt

I believe that this can be dealt with somewhat reasonably by simulation. Given a particular
management plan, simulate the plan N times, calculate the loss function (equation (1), and
draw a histogram of the losses.
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2.3 In�nite number of actions

A third di�culty is that there are in fact an in�nite number of management plans and
the plans themselves can involve a complicated array of actions, including things like size
limits, openings and closings, species-speci�c �sheries, catch-and-release of unmarked �sh.
Given the SSM uses e�ort as an input variable, I recommend (as Jim Norris did) that all
management actions be translated into e�ort matrices. This will involve a pre-program of
sorts{ but will somewhat resemble the e�ort scaling factors currently used in various models.

Another problem though, also raised by Jim Norris, is that it is impossible to write down
all possible e�ort matrices, and tedious to even write down a large set of possibilities. Instead,
the manager would like an optimization (or near optimization) program to sift through the
set of possible e�ort matrices1. A possible solution may be to use simulated annealing. Let a
be a particular collection of e�ort matrices, i.e., the action or management plan, and de�ne
some initial plan a0. The algorithm for step t is as follows:

Step 1 : Simulate the plan N times with at as the input and calculate the loss function
(equation 1) for each simulation

Step 2 : Calculate the average (expected) loss and let this be the objective function to be
minimized:

OF (at) =
1

N

NX
i=1

NX
i=1

L(��i; at)

Step 3 : Randomly perturb at `slightly' to get at+1 (e.g., add Poisson random variables to
each component of the e�ort matrix) and repeat Steps 1 and 2 using a1 now.

Step 4 : Compare the two objective functions:

� If OF (at+1) < OF (at), keep at+1 and go back to Step 3 to get at+2

� Else keep at+1 with probability

exp

"
�
OF (at+1)� OF (at)

T

#

otherwise set at+1 = at (keep at)

Step 5 : if so many interations have been done, shrink T to kT .

Step 6 : Quit when `close enough'.

1Note- given a particular e�ort matrix, there's a need for a post-program perhaps to convert the e�ort

matrix into particular management actions?
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