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1 More complex spatial frameworks

The use of a line segment to describe the spatial territory of coho salmon is an optimistic
oversimpli�cation. The Humptulips coho salmon stocks do tend to stay in the `outside' o�-
shore areas, but many coho and chinook stocks reside and are caught in `inside' marine areas
such as Puget Sound and between Vancouver Island and mainland British Columbia. A more
complex migration module will need to be formulated to estimate transition probabilities for
moving to and from these inside areas. The initial distribution will also need to include such
inside areas.

The next level of complexity for the spatial framework is to include Puget Sound and the
waters between Vancouver Island and mainland BC. To describe this non-linear framework
the position of an individual �sh at time t is de�ned using a 2 dimensional random variable.
The random variable is labeled [xt; pt] where x is an label for a region the �sh is in at time
t and pt is a particular location within xt

1.

For example, suppose a �sh is located at time t in the Cape Flattery region, and the
natal area is somewhere in the Quillayute region. Assume that the �sh is allowed to move
anywhere along the coast north of its natal area or to the inside waters, but it can move
inside only at the Straits of Juan de Fuca, not going around the north side of Vancouver
Island. De�ne xt to have one of three possible values:

� OS for outside south (from natal area to Straits of Juan de Fuca),

� ON for outside north (from Straits of Juan de Fuca to northern extent of range),

� I for inside waters.

Then pt is de�ned conditional on the value of xt:

� 0 � (ptjxt = OS) � B

� B � (ptjxt = ON) � UBO

� 0 � (ptjxt = I) � UBI

where B is the location of the Straits of Juan de Fuca, UBO is the upper bound on the
outside `line', and UBI is the upper bound on the inside `line'.

1Formally a random variable must be a real number, so this is technically incorrect. To make this correct

x could consist of numbers matched with region.
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The next step is to de�ne a probability distribution for (xt; pt). Let r1, r2, and r3 be
the probability of being in OS, ON , or I and f1(pt), f2(pt), and f3(pt) be corresponding
probability functions for locations within each region. So

P
3

i=1 ri = 1 and each of the fi
integrate to 1 over the domains de�ned above.

For example, as in the current coho SSM suppose that the outside distribution followed
a beta distribution if no inside movement occured. Let fO be this outside beta distribution.
Assuming the �sh is located in the Cape Flattery region at time t� 1, let r1 be the integral
of fO over the range 0 to B; i.e., r1 is the probability of staying south of the Straits of Juan
de Fuca. The probability of not staying south is then 1-r1. Conditional on not staying south,
let pI be the probability of moving inside. Then the three ri can be de�ned as:

r1 =
Z B

0

fO(x)dx

r2 = (1� r1)(1� pI)

r3 = (1� r1)pI

Further assume that if a �sh goes inside (xt=I), then its distribution is a di�erent beta dis-
tribution, denoted fI . Now the complete probability distribution for (xt; pt) can be de�ned:

Pr(xt = OS; pt) = r1
fO(pt)R B

0
fOS(x)dx

Pr(xt = ON; pt) = r2
fO(pt)

1�
R B
0
fOS(x)dx

Pr(xt = I; pt) = r3fI(pt)

This has been presented formally to hopefully make clear the construction, but considerable
simpli�cation can be done by some cancellations and re-expression:

Pr(xt = OS; pt) = fO(pt) (1)

Pr(xt = ON; pt) = (1� pI)fO(pt) (2)

Pr(xt = I; pt) = pIfI(pt) (3)

Given this probability distribution, putting together the movement matrix for time t,
Mt, is in theory simple and will be done as with the current coho SSM. To determine the
probability of moving from area a to area b, a double integration is done. The outer integral
is over the length of the current area a and has function value 1/(length of a). The inner
integral is the probability of being anywhere in b given the particular location in a that is
speci�ed by the outer integral. The inner integral uses one of the three components of the
probability distribution (equations (1), (2), or (3)) depending on which region area b is in.
As in the current SSM both ri and fi should depend upon previous location and time, pt�1
and t.

An example of determining the movement matrix components: the current area a is
Cape Flattery and let b1, b2 and b3 be areas in OS, ON , and I, with `lower' and `upper'
boundaries denoted by bi;L and bi;U (i=1,2,3). Assume that fO and fI have parameters that
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depend upon the location in a and time and denote this by fO(ptja; t) and fI(ptja; t).

Pr(a! b1) =
1

aU � aL

Z aU

aL

"Z b1;U

b1;L

fO(ptja; t)dpt

#
da (4)

Pr(a! b2) = (1� pI)
1

aU � aL

Z aU

aL

"Z b2;U

b2;L

fO(ptja; t)dpt

#
da (5)

Pr(a! b3) = pI
1

aU � aL

Z aU

aL

"Z b3;U

b3;L

fI(ptja; t)dpt

#
da (6)

2 Competing �sheries and multiple e�ort measures

A stock of �sh is often harvested simultaneously in time and area by di�erent types of
�sheries and mixtures of gear; e.g., recreational troll �sheries and purse seines. Assume
for the moment that the information on the e�ort expended by each type of harvester is
available for the same temporal and spatial units. The standard Baranov catch equation
(Ricker 1975) can be extended to include e�ort from competing gear types. For three gear
types, for example, and ignoring the U.S.-Canada distinction, the survival and harvest rates
in area k

S[k; k] = exp[�F1 � F2 � F3 �Nt]

Hi[k; k] =
Fi

F1 + F2 + F3 +Nt

(1� S[k; k])

where i=1, 2, 3 and Fi is a function of the e�ort by gear type i and a catchability coe�cient
particular to the gear.

One di�culty is that data on e�ort levels for di�erent types of �sheries are sometimes
recorded at di�erent temporal resolutions, e.g., monthly versus weekly. Another di�culty
is that the catch areas for recreational and commercial �sheries may fail to coincide; e.g.,
one recreational catch area may include portions of two di�erent commercial �shery areas.
These di�erences will be dealt with separately and then together. In each case I assume that
there are only two competing �sheries, commercial and recreational troll, but presumably
the approaches will extend to more gear types.

First cut recommendations

1. Given two �sheries with di�ering temporal resolution: partition the coarser data to the
�ner resolution, using smoothing techniques (like nonparametric density estimation).

2. Given two �sheries with di�ering spatial partitioning, one of which is nested in the
other: partition the coarser resolution �shery data to the �ner scale, using smoothing
techniques.

3. Given two �sheries with di�ering spatial partitioning, neither of which are nested in
the other: assuming one is somewhat coarser than the other, �rst smooth the coarser
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�shery data and then partition the smoothed values according to the �ner spatial
resolution.

4. Given two �sheries with di�ering temporal resolution and non-nested spatial partition-
ing: �rst temporally partition the �shery with coarser temporal data, then spatially
partition the �shery with coarser spatial data, in both cases using smoothing tech-
niques.

3 Dealing with chinook

Chinook salmon from the same stock and cohort will mature at di�ering ages, 2, 3, 4, 5,
and occasionally 6 years. Within a given year call an immature �sh one that is not heading
homeward to spawn, while a mature �sh is heading home to spawn. I propose several changes
to the SSM to account for this more complex life history.

� Double the length of the SSM state vector to include the immature and mature numbers
in each area, stacking the immature K by 1 vector above the mature K by 1 vector.

� Insert a 2K by 2K maturation probability matrix (P ) in the state equation, to the left of
the survival matrix (maturation occurring instantaneously after exposure to mortality
factors, but before movement). The matrix would be logically partitioned into 4 square
K by K submatrices. The upper left submatrix is diagonal with elements being the
probability of an immature �sh staying immature. The lower left submatrix is diagonal
with the complements of the upper left values. The upper right submatrix is 0 and the
lower right submatrix is an identity matrix; the latter based on the assumption that
mature �sh stay mature.

� Make the survival and movement matrices block diagonal 2K by 2K matrices. The up-
per left K by K submatrices give the survival and movement probabilities for immature
�sh and the lower right submatrices are for the mature �sh.

� Make the harvest matrix in the observation equation a K by 2K matrix, with the left
half a K by K diagonal matrix with harvest rates for immature �sh, and the right half
is for mature �sh. The assumption here is that recovered �sh are not (or cannot) be
distinguished by degree of maturation.

More concisely, the SSM:

"
XI;t

XM;t

#
=

"
MI;t 0

0 MM;t

# "
I�Pt 0
Pt I

# "
SI;t 0

0 SM;t

# "
XI;t�1

XM;t�1

#
+

"
wI;t�1

wM;t�1

#
(7)

h
Yt

i
=

h
HI;t HM;t

i "
XI;t

XM;t

#
+

"
wI;t�1

wM;t�1

#
(8)

The particular formulations for each component are 
exible, but here are a few possibilities:
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1. The harvest submatrices still depend upon �shing e�ort, but the catchability coe�-
cients for HI;t and HM;t would be allowed to di�er to account for di�erences in vulner-
ability or size limits.

2. The survival submatrices depend upon the previous period harvest, and thus are af-
fected by the changes to the harvest submatrices, but they are also a function of natural
mortality. The natural mortality parameter could be allowed to di�er for immature
and mature substocks. More importantly, however, the natural mortality parameter
should be a function of time to account for the decreased natural mortality rates for
aging �sh. This is more critical for chinook than coho because of the many more
age classes for chinook. The overwinter natural mortality must be accounted for with
chinook, whereas for coho only the �nal age class is harvested (in general).

One possibility is to assume a logistic model for natural mortality with time as the
independent variable. The curve should of course be decreasing with time, but the
intercept and slope coe�cients should likely vary between age classes. For example,

Pr(Age i �sh dies at time t) =
exp(�i

0
+ �i

1
t)

1 + exp(�i0 + �i1t)

for ages i= 2, 3, 4, 5.

3. The movement submatrices must di�er, of course, between immature and mature sub-
stocks. Di�erent theories about movement need to be evaluated and quality of �t could
be a basis for selecting one theory over another (or some variations on hypothesis test-
ing, perhaps). For example, assume that immature �sh up to age 5 continue to move
north, in general, while the movement matrix for mature �sh has zero probabilities for
moving away from the natal area. Another theory could assume a cyclic pattern in the
ocean with both mature and immature �sh tending to head to the natal area late in
the summer, but immature �sh not moving inland.

One of the di�cult decisions will be specifying the nature of the initial distribution
following each winter with no harvest recoveries.
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