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State-Space Modeling of Animal Movement and Mortality with
Application to Salmon

Ken B. Newman, University of Idaho
Division of Statistics, University of Idaho, Moscow, ID 83843-1104

Summary
A general description of individual animal behavior and history consists of three compone
initial spatial location, mortality, and spatial translation. Flexibility and generation of
competing theories arise from alternative formulations for any component. Individual anim
models can be modified for spatially (and temporally) aggregated animals by appropriate
integration. State-space models provide a natural framework for estimating and predicting
animal population abundance given partial or inexact information, such as that provided b
mark-recapture or harvest data. As an example, a multivariate, linear normal state-space 
that explicitly incorporates each of the three individual animal components is formulated f
Pacific coho salmon (Oncorhynchus kisutch) migration and harvest. Using recoveries of tagge
coho salmon caught in ocean fisheries and associated measures of fishing effort, the Kalm
filter and maximum likelihood are used to estimate parameters of the processes. Real-tim
management of a harvested animal population could be improved using recent harvest an
effort data, for example, the estimated parameters, and the Kalman prediction algorithm.
Competing theories of survival and migration can be statistically tested as well.

KEY WORDS: Kalman algorithms, Capture and Recapture, Spatial Statistics, Time Serie

1 Introduction
Describing and identifying the mechanisms associated with animal movement and surviva
important objectives of fish and wildlife scientists and managers. Understanding the facto
that may influence survival and spatial-temporal distribution of a population can be helpfu
rebuilding threatened populations. In the case of exploited species, knowledge of animal
abundance by area and time is helpful for harvest control.

Previous work on the modeling of animal survival and movement has been at both the
individual animal and the spatially-temporally aggregated levels. Anderson-Sprecher and
Ledolter (1991) modeled the movement of individual mule deer (Odocoileus hemionus) as a
Page 1
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two-dimensional random walk and allowed for errors in the telemetry data by using a state
space model. Hilborn (1990) estimated survival and migration rates from one area to ano
over multiple time periods for skipjack tuna (Euthynnus pelamis), which had been marked and
released in different areas. Schwarz, Schweigert, and Arnason (1993) also formulated an
approach to estimating survival and migration rates between areas using data similar to
Hilborn's (1990) but for Pacific herring (Clupea harengus pallasi).

Here I present a framework for individual animal movement and survival with three distinc
components, initial location, survival, and movement. Explanatory covariates can be
incorporated in any of three components and competing theories for survival and moveme
can be tested statistically. The individual animal framework can be modified to accommod
spatial-temporal aggregation of animals. To account for uncertainty in information about
individual or groups of animals, state-space models are used to link observed data to the
underlying true situation. As a demonstration, the methodology is applied to model the
movement and survival of Pacific coho salmon (Oncorhynchus kisutch) marked at a hatchery
and recovered in ocean fisheries.

To minimize notation and simplify the discussion, the existence of density functions with
respect to counting or Lebesgue measure is assumed throughout and are generically den
f. Time will be treated as a discrete value and the distance between points in time are eve
spaced,t = 0, 1, 2, . . ..

2 Individual animals

Let pt represent the location of a given animal at timet, wherept may be a vector. Letst be an

indicator variable for being alive at timet andmt be the spatial translation made from timet - 1

to t. For simplicity, movement is assumed to occur exactly at timet, while mortality can be
experienced at any time between [t - 1, t). If an animal dies during [t - 1, t), its location remains
pt-1 at timet. The location at timet can be written as

pt = pt - 1 +stmt [eq 1]

If spatial location is described with respect to the plane, and Cartesian coordinates are us
1] can be written as

(xt, yt) = (xt-1, yt-1) +st ( xt, yt)∆ ∆
Page 2
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where  represents translation in one dimension. Expressing the change in location,mt, in

polar coordinates may be a more natural approach. An animal ’chooses' a direction to mot,

and then a distance to move in that direction,rt. Again working within the plane,

(xt, yt) = (xt-1, yt-1) +st (rt cos t, rt sin t)

The modeling of individual animal movement and mortality can thus be partitioned into su
models for initial location, survival, and movement, which in turn may be functions of
covariates and parameters, . Initial location,p0, is either a known constant or a random

variable with density function  (p0). Survival at timet may be modeled conditional onst-1

with density function  (st | st-1), and may be a function of covariates such as age, animal s

location, and harvesting effort. For movement either a single density function could be us

(mt), or a combination of density functions, one for direction,  (t), and distance,  (rt), the

latter perhaps being conditional on the direction. Both  andr could be time and space
dependent.

The likelihood for a given animal observed forT time periods is:

3 Spatially aggregated animals

Previous locations known

Suppose that instead of information about an individual animal's exact location, one has d
about animal abundance inK disjoint areas at timet. Area is either a line segment, a region, o

∆

θ

θ θ

γ
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a volume in , , or , respectively. Letna,t represent the abundance in areaa at timet.

Suppose also that the number of animals in areaa at t that were in another areab at t - 1 is
known. For instance,nb,t-1 were marked with a distinguishing mark, and these marks can be

counted in areaa at timet. The likelihood function for the aggregates can be formulated in
terms of each of the individual animal model components. In the case of known releases 
marked fish within each area, the starting vector of abundance would be a constant. Othe
the probability of individual animal's presence in areaa at t= 0:

[eq 2]

and the initial spatial distribution is a multinomial random variable with sample sizen0, say,

and probability vector . Assuming independence and constant surv
probabilities within an area-time cell, the number of animals surviving to the next time poi
a binomial random variable. Lettingna,t + be the survivors of those in areaa at timet andp be

(sa,t= 1),

[eq 3]

For a given location within cella, the probability of moving to a new cellb is the integral of
the density of the translation random variable, over the direction and distance necessary 
reachb from that location ina. In the absence of information as to the location of individuals
within cell a, assume that the location within the cell is a uniform random variable
appropriately scaled to the cell length (or area or volume). For simplicity suppose the spa
framework is a line with the left and right endpoints ofa andb being [aL, aR] and [bL, bR],

respectively, whereaR <= bL. The probability of moving froma to b is:

[eq 4]

where the density function subscripts emphasize the potential for space and time depend
Assuming independence of movement between animals, the number moving from cella to any
of theK cells is multinomial with total sample sizena,t + and probability vector,

ℜ1 ℜ2 ℜ3

Pr a∈( ) f γ p0( ) p0d

a
∫=

Pr 1∈( ) … Pr K∈( ), ,( )

f γ

Pr na t +, na t, p,( )
na t,

na t +, 
 
 

p
na t +, 1 p–( )

na t, na t +,–
=

qa b→ f γ a t, , m( ) md ad
bL a–
bR a–

∫aL

aR∫=
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vector  conditional onna,t is a product of binomial and multinomial

distributions.

Previous locations unknown

Sometimes abundance by time and area is known, but not the previous location of the an
To show that some information may be extracted from such a situation, consider an extre
artificial example where there are only two areas,a andb, and two time periods. During the
first time period there are 100 animals in areaa but 0 animals inb. In the second time period
there are 0 animals ina and 80 inb. Clearly the survival rate was 80% and the movement
probability froma to b was 100%.

The likelihood based on this kind of aggregated data can be formulated in a manner simil
before. The initial location and survival components are identical to [eq 2] and [eq 3],
respectively. The likelihood for the movement component, however, becomes a complica
convolution of multinomials constrained by the necessity that the total in each cell at the n
time equal observed values. Suppose there are two areasa andb andna,t-1 andnb,t - 1 equals 1

and 3, andna,t andnb,t equals 2 and 2. The probability of (na,t , nb,t | na,t-1 , nb,t - 1) is the sum of

all the probabilities of events that could yield 2 ina and 2 inb. Here there are only two
possibilities, if one stays ina, then one came fromb; if one moves tob, then two came fromb.
The number of possibilities is prohibitively large, however, in most situations.

A simplifying approximation is a multivariate normal distribution for the conditional
distribution of the vector of counts att, nt, givennt - 1. The mean vector and covariance matrix

correspond to linear combinations of multinomial expectations and covariances. The mea
vector, ,

whereSt is a diagonal matrix where each element on the diagonal is the survival probabilit

the corresponding area, e.g.,St[a, a] for areaa, and is a function of (st). Mt is a matrix with

columna corresponding to the movement probabilities from areaa to any area.
The covariance matrix , has components

qa 1→ … qa K→, ,( )

na 1 t 1+,→ … na K t 1+,→, ,{ }

µt

µt MtStnt 1–=

f γ

Σt
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4 State-space models

Error free information about individual animal location or actual abundance in a time-area
is seldom available. For example, only indices of abundance by time and area may be
available, such as aerial counts of deer or fish caught in a fishery. State-space models (S
are a natural framework for relating actual animal location to estimated locations or area-t
counts to count indices. SSMs consist of two time series (scalar or vector), one based on
unobservablestate process,xt, and the other based on a knownobservation process,yt, that is a

function ofxt. Assuming a first order Markovian state process, a general description of the

processes may be written in terms of the relevant conditional density functions:

State Process :f (xt | xt - 1) [eq 5]
Observation Process :g (yt | xt) [eq 6]

A special case of [eq 5] and [eq 6] is the normal dynamic linear model:

xt = At xt - 1 +vt [eq 7]

yt = Bt xt + wt [eq 8]

whereAt andBt are nonrandom scalars or matrices of appropriate dimension, and possibly

functions of unknown parameters.vt andwt are mean zero normal variates of appropriate

dimension, generally assumed independent of each other. The Kalman algorithms (Kalma
1960) are well known procedures for calculating the likelihood and conditional expectation
the state variable,xt, given observations,y1, y2, . . .,ys, wheres <, =, or >t. West and Harrison

(1989) is a modern reference on normal dynamic linear models and the Kalman algorithm
(also see Sullivan (1992) for an abbreviated description).

Brillinger et al. (1980), Sullivan (1992), and Speed (1993) have used SSMs for modeling
population abundance over time (see also Schnute (1994) for an exposition on sequentia
fisheries models). None of these formulations, however, have included a spatial compone
dealt with migration.

Σt a a,[ ] =

Σt a b,[ ] =
Page 6
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5 Application to salmon

Models used by the Pacific Salmon Commission for the management of coho salmon har
saltwater fisheries do not contain an explicit migration mechanism (Hunter 1985). To estim
the harvest in areaa at timet, estimates of historical harvest rates fora andt, with some scaling
for changes in harvest effort levels, are applied to estimates of abundancepooled over all areas.
All fish not harvested at timet are therefore, according to the models, available to all fisherie
at t + 1. As an extreme example, harvest reductions off the coast of California at timet translate
into additional fish available to Alaskan fisheries at t + 1. As a contrast to these models, a sta
space model for a single stock of coho salmon was developed with an explicit migration
mechanism.

Data and temporal-spatial scale

The survival and migration of three different sets of marked hatchery coho, marked and
released in the spring of 1984, 1985, and 1986, respectively, were modeled separately.
Available data included recoveries of fish marked and released from a hatchery on the we
coast of Washington state (Washington Department of Fisheries and Wildlife Humptulips
hatchery). After the release in the spring, the salmon spent over a year in the ocean and w
caught the following summer in various ocean fisheries. Catches were sampled at known
and the number of marked recoveries estimated. For management purposes the ocean fi
are partitioned into several regions and recovery information is aggregated within these
regions. The estimated recoveries for a particular group released from this hatchery in 19
caught in 1985 are summarized by recovery area and four week periods (beginning some
in June) and shown in Table 1: along with estimates of the harvest effort, as measured by
number of troll boats bringing their catch into port in the United States and by days of fish
by troll boats in Canada. The areas are shown from south (NC=northern California) to nor
(NBC=northern British Columbia) with the hatchery located adjacent to the catch area lab
GH (GH=Grays Harbor). The Canadian catch areas begin with SVI (southwest Vancouve
Island). Some recoveries are made by other types of fisheries but the effort measures are
reflective of these other fisheries (and will introduce additional noise in the modeling).

The temporal scale used in the state-space model was weekly,T=16. The spatial framework
was a linearization of the thirteen catch areas between northern California and northern B
Columbia. The location of the river leading to the hatchery was set equal to 0, with locatio
the south having negative spatial coordinates and those to the north having positive value
This oversimplifies the spatial distribution and omits those fish that move into inside water
Page 7
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bodies such as Puget Sound, but for coho salmon from this hatchery, the vast majority of
recoveries are in the coastal fisheries.

SSM formulation

The state vector,nt, is the unknown abundance in each catch area and the observation vec

ct, is the corresponding estimated number of tag recoveries. An auxiliary vector used in b

the state and observation equations to model mortality is fishing effort. In matrix notation,
state and observation equations:

nt = Mt St nt - 1 +vt [eq 9]

ct = Ht nt + wt [eq 10]

Ht is a diagonal harvest matrix containing mortality due to fishing.Mt andSt again represent

movement and survival, respectively, and the covariance matrices forvt andwt follow the

formulation of  given in 5.

The abundance to the initial point in timet = 0 was binomial (R, ) whereR is the number of

fish tagged and released from the hatchery and  is the survival rate up to time 0. The de

for initial location,f(p0), was a truncated gamma distribution scaled to fit the length of the

catch areas. The shape parameter was fixed at 2.0, leaving the location parameter to be
estimated,

p0 ~ Gamma ( , 2.0).

To calculate the likelihood with the Kalman filter, the initial abundance vector,n0, for a given

set of parameter values was fixed at the expected values, namely,R  times the probabilities

for each of the thirteen locations.

The diagonal survival matrix,St, was a function of natural and fishing mortality, with differen

scaling used for the different U.S. and Canadian effort measures. The probability of surviv

Σt

γ0

γ0

γ t

γ0

St a a,[ ] γn– –( )exp≈( )
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where  and  are parameters corresponding to natural and fishing mortality rates,

respectively. Different parameter values for  were allowed for US and Canadian fisherie

The corresponding diagonal of the harvest matrix:

Scaling of effort and parameters is not shown in the above expressions and is the reason
approximation rather than equality.

Movement (mt) was modeled as a random walk with unequal probability of direction and

variable step sizes. As time increased and distance from hatchery increased, the probabi
moving back to the hatchery increased. Lettingt be an indicator variable for movement

toward the hatchery:

Step size was modeled as a gamma random variable,

rt ~ Gamma (ff, fi | t),

where the location and scale parameters depended upon directiont. Conditional on moving

toward the hatchery, the probability of a larger step increased as time and distance increa

ffj\022t = 1\031flr (Distance2+t2)

fij\022t= 1\031Distance2+t2,

while conditional on moving away from the hatchery, the probability of a larger step decre
with time and distance,

ffj\022t= 0\0311=(Distance+t)

fij\022t= 0\0311=(Distance+t).

A unique wrinkle to the modeling of salmon is that most survivors will eventually try to retu
to the natal area. Some return to the hatchery, and the remainder either spawn naturally i

γn γ f

γ f

Ht a a,[ ] ≈( )

θ

f θt 1=

θ

θ
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wild or are caught by in-river fisheries. Recoveries in the natal areas must be treated diffe
than ocean recoveries; if they arrive at the hatchery, they are with high probability recove
To ’finish' the modeling period, natal area recoveries beyond a ’late' point in time, week 1
were aggregated into the last week of the modeling period, week 16, natal area effort dur
that period was set equal to zero, and the harvest rate in the natal area was fixed at 99.9%
underlying assumption of this approach is that all the remaining fish that would return to th
natal area had returned by week 16.

Results

The Kalman filter algorithm was used to calculate the likelihood for the vector

based on [eq 9] and [eq 10] for salmon releases from each of the three different years. Th
nonlinear optimization program NPSOL (Gill, et al. 1986) was used to estimate the param
(Table 2:).
Estimates of the step size parameter  reached the lower bound of 0.10 for 1986 and 19

The initial survival rate parameter  and the natural mortality rate parameter  were

essentially unidentifiable, e.g., increases in the initial survival rate simply translated into
increases in the natural mortality. The results in Table 2: were based on  arbitrarily set e

to zero.

Filtered estimates of abundance by area were plotted by week and began, of course, as a
spatially smooth distribution that became increasingly irregular as catches were removed
differential rates by area. At the end of the 16 week period most of the survivors were
concentrated in the natal area, but there were still some fish remaining at sea.

The initial survival estimates  can be compared to simple cohort analysis estimates

assuming no natural mortality, the sum of catches and hatchery returns divided by releas
(Table 3:). The SSM estimates exceeded the simple estimates every year. Partially this is
the SSM leaving some fish still at sea at the end of modeling period, extending the model

period to 18 weeks allows more fish to return to the natal area and  decreases. Anoth

explanation is the incidental fishing mortality of fish fatally hooked or netted but not landed
which simple cohort analysis does not account for.

The initial location parameter estimate, , is larger for 1985 than 1986 and 1987, indica

a more northerly distribution for 1985. This is consistent with the catch recovery informatio
For 1985 only 4% of the non-natal area recoveries were in areas south of the natal area, 

γ0 γ t γ f γ θ γ r, , , ,( )

γ r

γ0 γn

γn

ˆ γ0

ˆ γ0

ˆ γ t
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the results for 1986 and 1987 were 15% and 19%, respectively. This comparison is confo
somewhat by increases in relative effort in 1986 and 1987, but the magnitude of effort inc
was not as large as recovery increase.

The fishing mortality rates for both the U.S. and Canadian fisheries as a function of effort 
calculated for a range of effort levels and found to be within reason (30 to 40% at most wi
given unit of area).

The movement rates toward the natal area can be estimated from the expected step size
making corrections for the initial scaling of catch area locations, the expected step sizes p
week toward the natal area were 140 miles for 1985 and around 100 miles for 1986 and 1

More complex submodels were tried as well, but sparse recovery matrices led to more
instability in the estimates; additional details and data are available in Newman (1993).

6 Discussion

Animal survival and migration was approached at the individual animal level with a
decomposition into the three components of initial location, survival, and movement. Vario
explanations for individual animal movement and mortality can be postulated for each
submodel. Using observations about actual behavior, e.g., from telemetry data, statistical
can be used to compare different theories.

State-space models and the Kalman algorithms are a useful means of estimating parame
testing hypotheses when exact information is unavailable. Given historical parameter esti
managers of exploited populations could use SSMs to predict the impact of various harve
plans. Depending upon the temporal resolution of the harvest season, inseason managem
changes could be made using currently available harvest information and the Kalman filte

The application to salmon given here is arguably an improvement on currently used harve
management models in that unreasonable catch transfers between extreme regions are u
On the other hand, the SSM formulation for the available data is highly model driven. A m
data driven application would be to use the type of mark and recovery data used by Hilbo
(1990) and Schwarz et al. (1993), for example, which was based on spatially-temporally
disjoint release and recovery sites. Incorporating available ocean environmental data, suc
sea surface temperature, could prove useful as well in explaining, and perhaps predicting
parameters relating to initial spatial location.
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a. All recoveries in natal area are included.

Table 1:Estimated recoveries and troll fishing effort in 1985 for a coho release group (Tag
code 632861) summarized by thirteen catch areas and four week periods.

Area/Time
Estimated Recoveries Troll effort

1-4 5-8 9-12 13-16 1-4 5-8 9-12 13-16

NC 0 0 0 0 1 3 1 0

Br 0 0 0 0 14 30 47 58

CB 0 0 0 0 3164 3134 1223 439

Np 1 0 0 0 910 653 133 79

Tl 0 2 2 0 481 436 140 84

As 0 3 0 0 0 365 1 0

GH 8 3 0 358a 1014 36 0 0

Qu 0 0 0 0 576 156 32 0

CF 5 3 7 0 202 1043 237 2

SVI 16 30 19 7 9129 12,918 10,078 2871

NVI 21 51 11 2 6730 7779 4230 1036

SBC 0 11 1 0 1789 2465 2457 58

NBC 0 0 0 0 8932 10,900 9411 4011
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a. Parameter estimate at lower bound.
b. .ibid

Table 2: Individual animal survival and movement parameter estimates
for three years of coho salmon hatchery releases with standard errors

in parentheses.

Parameters 1985 1986 1987

2.15 (0.12) 4.71 (0.08) 1.72 (0.05)

8.26 (0.40) 5.33 (0.08) 5.44 (0.19)

 (US) 6.30 (1.32) 4.82 (0.41) 2.20 (0.38)

 (Canada) 2.11 (0.16) 4.01 (0.14) 3.40 (0.23)

1.50 (0.15) 1.87 (0.06) 2.16 (0.12)

1.38 (0.51) 0.10a (0.03) 0.10b (0.05)

Table 3: Comparison of initial survival rates, , with cohort analysis (with =0)

Ocean and Natal Area 1985 1986 1987

Recoveries 567 1763 839

Releases 45,404 50,876 63,360

Cohort analysis 1.25% 3.46% 1.32%

SSM (16 weeks) 2.15% 4.71% 1.72%

SSM (18 weeks) 1.70% 4.52% 1.43%

γ0

γ t

γ f

γ f

γθ

γ r

ˆ γ0 γn
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