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Summary

A general description of individual animal behavior and history consists of three components,
initial spatial location, mortality, and spatial translation. Flexibility and generation of
competing theories arise from alternative formulations for any component. Individual animal
models can be modified for spatially (and temporally) aggregated animals by appropriate
integration. State-space models provide a natural framework for estimating and predicting
animal population abundance given partial or inexact information, such as that provided by
mark-recapture or harvest data. As an example, a multivariate, linear normal state-space moc
that explicitly incorporates each of the three individual animal components is formulated for
Pacific coho salmorndncorhynchus kisutg¢hmigration and harvest. Using recoveries of tagged
coho salmon caught in ocean fisheries and associated measures of fishing effort, the Kalman
filter and maximum likelihood are used to estimate parameters of the processes. Real-time
management of a harvested animal population could be improved using recent harvest and
effort data, for example, the estimated parameters, and the Kalman prediction algorithm.
Competing theories of survival and migration can be statistically tested as well.
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1 Introduction

Describing and identifying the mechanisms associated with animal movement and survival ar
important objectives of fish and wildlife scientists and managers. Understanding the factors
that may influence survival and spatial-temporal distribution of a population can be helpful for
rebuilding threatened populations. In the case of exploited species, knowledge of animal
abundance by area and time is helpful for harvest control.

Previous work on the modeling of animal survival and movement has been at both the

individual animal and the spatially-temporally aggregated levels. Anderson-Sprecher and
Ledolter (1991) modeled the movement of individual mule dedo¢oileus hemionjigis a
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two-dimensional random walk and allowed for errors in the telemetry data by using a state-
space model. Hilborn (1990) estimated survival and migration rates from one area to another
over multiple time periods for skipjack turauthynnus pelamjswhich had been marked and
released in different areas. Schwarz, Schweigert, and Arnason (1993) also formulated an
approach to estimating survival and migration rates between areas using data similar to
Hilborn's (1990) but for Pacific herrin@lupea harengus pallasi

Here | present a framework for individual animal movement and survival with three distinct
components, initial location, survival, and movement. Explanatory covariates can be
incorporated in any of three components and competing theories for survival and movement
can be tested statistically. The individual animal framework can be modified to accommodate
spatial-temporal aggregation of animals. To account for uncertainty in information about
individual or groups of animals, state-space models are used to link observed data to the
underlying true situation. As a demonstration, the methodology is applied to model the
movement and survival of Pacific coho salm@m¢orhynchus kisut¢hmarked at a hatchery

and recovered in ocean fisheries.

To minimize notation and simplify the discussion, the existence of density functions with
respect to counting or Lebesgue measure is assumed throughout and are generically denotec
f. Time will be treated as a discrete value and the distance between points in time are evenly
spacedt=0,1, 2, ....

2 Individual animals

Let p; represent the location of a given animal at timeherep, may be a vector. Let be an
indicator variable for being alive at timm@ndm, be the spatial translation made from timel

to t. For simplicity, movement is assumed to occur exactly atttinvbile mortality can be
experienced at any time between 1,t). If an animal dies during [ 1,t), its location remains
pr. at timet. The location at timeécan be written as

Pe =P - 14smy [eq 1]

If spatial location is described with respect to the plane, and Cartesian coordinates are used,
1] can be written as

(Xt Y) = Xt-1 Y1) ¥t (A% AYy)
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whereA represents translation in one dimension. Expressing the change in logation,
polar coordinates may be a more natural approach. An animal 'chooses' a direction te;move,
and then a distance to move in that directipmigain working within the plane,

(Xt Vo) = Kt-1, Yi-1) S (1 COSBy, Iy SiN 8y)

The modeling of individual animal movement and mortality can thus be partitioned into sub-
models for initial location, survival, and movement, which in turn may be functions of

covariates and parameteys, . Initial locatigf),is either a known constant or a random

variable with density functior, pg). Survival at timeé may be modeled conditional ey

with density functionf,  |s.1), and may be a function of covariates such as age, animal size,
location, and harvesting effort. For movement either a single density function could be used,
(my), or a combination of density functions, one for directign,8y), @nd distancef, r{), the

latter perhaps being conditional on the direction. Both rarwlld be time and space
dependent.

The likelihood for a given animal observed Totime periods is:

T

L(y) = f,(Po) [] fy(PePe=a)
t=1
.

= fy(Po) [] fy(Peoa+smy|P_y)
t=1
T

= Fy(Po) ['] fy(s|Py_ ) fy(my|(Sp 1))

t=1
3 Spatially aggregated animals
Previous locations known

Suppose that instead of information about an individual animal's exact location, one has data
about animal abundancelndisjoint areas at time Area is either a line segment, a region, or
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avolume in0* 0% , o0® , respectively. Leg ; represent the abundance in aaes timet.

Suppose also that the number of animals in aegd that were in another aréaatt - 1 is
known. For instance, ;.1 were marked with a distinguishing mark, and these marks can be

counted in area at timet. The likelihood function for the aggregates can be formulated in
terms of each of the individual animal model components. In the case of known releases of
marked fish within each area, the starting vector of abundance would be a constant. Otherwis
the probability of individual animal's presence in aaedt= 0:

Pr( Ua) = Ify(po)dpo [eq 2]
a

and the initial spatial distribution is a multinomial random variable with samplegizay,

and probability vectotPr( 0O1),...,(Pr OK)) .Assuming independence and constant survival
probabilities within an area-time cell, the number of animals surviving to the next time point is
a binomial random variable. Lettimg ; , be the survivors of those in ar@at timet andp be

fy(Sa= 1),

D nait D r-]a,t+
Pring t+ |Ng v P) = % EIO (1-p)
at+

r]a,t_na,t+ [eq 3]

For a given location within cedl, the probability of moving to a new célis the integral of

the density of the translation random variable, over the direction and distance necessary to
reachb from that location ira. In the absence of information as to the location of individuals
within cell a, assume that the location within the cell is a uniform random variable
appropriately scaled to the cell length (or area or volume). For simplicity suppose the spatial
framework is a line with the left and right endpointsi@ndb being b , ag] and [, bgl,

respectively, wherag <= Db, . The probability of moving froma to b is:

—a
Q= J‘;Tﬁf_afy, . (m)dmda [eq 4]

where the density function subscripts emphasize the potential for space and time dependenct
Assuming independence of movement between animals, the number moving fraro aally
of theK cells is multinomial with total sample sing, , and probability vector,
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(9,_ 1 -9, k) - Combining each of the components, the joint probability distribution for the
vector{n, ;.1 ... Ny« +1} CoONditional om,is a product of binomial and multinomial
distributions.

Previous locations unknown

Sometimes abundance by time and area is known, but not the previous location of the animal
To show that some information may be extracted from such a situation, consider an extreme
artificial example where there are only two areaasndb, and two time periods. During the

first time period there are 100 animals in aadaut O animals if. In the second time period

there are 0 animals mand 80 inb. Clearly the survival rate was 80% and the movement
probability froma to b was 100%.

The likelihood based on this kind of aggregated data can be formulated in a manner similar tc
before. The initial location and survival components are identical to [eq 2] and [eq 3],
respectively. The likelihood for the movement component, however, becomes a complicated
convolution of multinomials constrained by the necessity that the total in each cell at the next
time equal observed values. Suppose there are twozaeah andn, 11 andny, ;. j equals 1

and 3, anah, ; andny, ; equals 2 and 2. The probability of¢, Ny ;| Ng -1, Np ¢ - 1) IS the sum of

all the probabilities of events that could yield Ziand 2 inb. Here there are only two
possibilities, if one stays ia then one came frofn if one moves td, then two came frorh.
The number of possibilities is prohibitively large, however, in most situations.

A simplifying approximation is a multivariate normal distribution for the conditional
distribution of the vector of counts tan,, givenn, _ ;. The mean vector and covariance matrix

correspond to linear combinations of multinomial expectations and covariances. The mean
vector, y, ,

My = MSny 4

whereS§ is a diagonal matrix where each element on the diagonal is the survival probability fol
the corresponding area, e.§[a, a] for areaa, and is a function of,, ). M is a matrix with

columna corresponding to the movement probabilities from areaany area.
The covariance matrix, , has components
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2,[a, a

5 [a, b]

4 State-space models

Error free information about individual animal location or actual abundance in a time-area cell
is seldom available. For example, only indices of abundance by time and area may be
available, such as aerial counts of deer or fish caught in a fishery. State-space models (SSM)
are a natural framework for relating actual animal location to estimated locations or area-time
counts to count indices. SSMs consist of two time series (scalar or vector), one based on an
unobservablstateprocessy, and the other based on a knosbiservatiorprocessy,, that is a

function ofx. Assuming a first order Markovian state process, a general description of the two
processes may be written in terms of the relevant conditional density functions:

State Process f (x; | xt - 1) [eq 5]
Observation Process g (; | X¢) [eq 6]

A special case of [eq 5] and [eq 6] is the normal dynamic linear model:
Xp = AgXe- 1+v; [eq 7]
yt = Bt xt + wt [eq 8]

whereA; andB; are nonrandom scalars or matrices of appropriate dimension, and possibly
functions of unknown parametexg.andw; are mean zero normal variates of appropriate

dimension, generally assumed independent of each other. The Kalman algorithms (Kalman
1960) are well known procedures for calculating the likelihood and conditional expectations o
the state variableg, given observationgy, v, . . .,Ys, Wheres <, =, or >t. West and Harrison
(1989) is a modern reference on normal dynamic linear models and the Kalman algorithms
(also see Sullivan (1992) for an abbreviated description).

Brillinger et al. (1980), Sullivan (1992), and Speed (1993) have used SSMs for modeling
population abundance over time (see also Schnute (1994) for an exposition on sequential
fisheries models). None of these formulations, however, have included a spatial component o
dealt with migration.
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5 Application to salmon

Models used by the Pacific Salmon Commission for the management of coho salmon harvest
saltwater fisheries do not contain an explicit migration mechanism (Hunter 1985). To estimate
the harvest in areaat timet, estimates of historical harvest ratesd@ndt, with some scaling

for changes in harvest effort levels, are applied to estimates of abupdahegover all areas.

All fish not harvested at timeare therefore, according to the models, available to all fisheries
att + 1. As an extreme example, harvest reductions off the coast of California atramslate

into additional fish available to Alaskan fisheriestat 1. As a contrast to these models, a state-
space model for a single stock of coho salmon was developed with an explicit migration
mechanism.

Data and temporal-spatial scale

The survival and migration of three different sets of marked hatchery coho, marked and
released in the spring of 1984, 1985, and 1986, respectively, were modeled separately.
Available data included recoveries of fish marked and released from a hatchery on the west
coast of Washington state (Washington Department of Fisheries and Wildlife Humptulips
hatchery). After the release in the spring, the salmon spent over a year in the ocean and were
caught the following summer in various ocean fisheries. Catches were sampled at known rate
and the number of marked recoveries estimated. For management purposes the ocean fisher
are partitioned into several regions and recovery information is aggregated within these
regions. The estimated recoveries for a particular group released from this hatchery in 1984 ¢
caught in 1985 are summarized by recovery area and four week periods (beginning sometime
in June) and shown in Table 1: along with estimates of the harvest effort, as measured by
number of troll boats bringing their catch into port in the United States and by days of fishing
by troll boats in Canada. The areas are shown from south (NC=northern California) to north
(NBC=northern British Columbia) with the hatchery located adjacent to the catch area labelle
GH (GH=Grays Harbor). The Canadian catch areas begin with SVI (southwest Vancouver
Island). Some recoveries are made by other types of fisheries but the effort measures are not
reflective of these other fisheries (and will introduce additional noise in the modeling).

The temporal scale used in the state-space model was wEek6/, The spatial framework

was a linearization of the thirteen catch areas between northern California and northern Britis
Columbia. The location of the river leading to the hatchery was set equal to 0, with locations t
the south having negative spatial coordinates and those to the north having positive values.
This oversimplifies the spatial distribution and omits those fish that move into inside water
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bodies such as Puget Sound, but for coho salmon from this hatchery, the vast majority of
recoveries are in the coastal fisheries.

SSM formulation

The state vectony, is the unknown abundance in each catch area and the observation vector,
C;, Is the corresponding estimated number of tag recoveries. An auxiliary vector used in both

the state and observation equations to model mortality is fishing effort. In matrix notation, the
state and observation equations:

nt=MtStnt-1+vt [eq 9]
ct = Ht nt +wt [eq 10]

H, is a diagonal harvest matrix containing mortality due to fistgndS again represent
movement and survival, respectively, and the covariance matricgsafwtw; follow the
formulation of £, givenin 5.

The abundance to the initial point in tine 0 was binomialR, y,) whereR is the number of
fish tagged and released from the hatcheryygnd is the survival rate up to time 0. The densit
for initial location,f(pg), was a truncated gamma distribution scaled to fit the length of the

catch areas. The shape parameter was fixed at 2.0, leaving the location parameter to be
estimated,

Po ~ Gammayy,, 2.0).

To calculate the likelihood with the Kalman filter, the initial abundance vagofor a given
set of parameter values was fixed at the expected values, n&ygetimes the probabilities
for each of the thirteen locations.

The diagonal survival matrixg, was a function of natural and fishing mortality, with different
scaling used for the different U.S. and Canadian effort measures. The probability of survival,

S([a a] = exp(=y,— ))
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wherey, and;; are parameters corresponding to natural and fishing mortality rates,
respectively. Different parameter valuesyor  were allowed for US and Canadian fisheries.
The corresponding diagonal of the harvest matrix:

H ([a a] = )

Scaling of effort and parameters is not shown in the above expressions and is the reason for
approximation rather than equality.

Movement (n) was modeled as a random walk with unequal probability of direction and

variable step sizes. As time increased and distance from hatchery increased, the probability ¢
moving back to the hatchery increased. Letingoe an indicator variable for movement

toward the hatchery:

f6, = 1

Step size was modeled as a gamma random variable,
re ~Gamma(ff, fi| 6 t),

where the location and scale parameters depended upon digeg¢tidonditional on moving
toward the hatchery, the probability of a larger step increased as time and distance increased

ffj\022t = 1\031flr (Distance2+t2)
fi\022t= 1\031Distance2+t2,

while conditional on moving away from the hatchery, the probability of a larger step decrease:
with time and distance,

ff\022t= 0\0311=(Distance+t)
fi\022t= 0\0311=(Distance+t).

A unique wrinkle to the modeling of salmon is that most survivors will eventually try to return
to the natal area. Some return to the hatchery, and the remainder either spawn naturally in th
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wild or are caught by in-river fisheries. Recoveries in the natal areas must be treated different
than ocean recoveries; if they arrive at the hatchery, they are with high probability recovered.
To ’finish' the modeling period, natal area recoveries beyond a ’late’ point in time, week 14,
were aggregated into the last week of the modeling period, week 16, natal area effort during
that period was set equal to zero, and the harvest rate in the natal area was fixed at 99.9%. T
underlying assumption of this approach is that all the remaining fish that would return to the
natal area had returned by week 16.

Results

The Kalman filter algorithm was used to calculate the likelihood for the vegiar, v;. v, V,)

based on [eq 9] and [eq 10] for salmon releases from each of the three different years. The
nonlinear optimization program NPSOL (Gill, et al. 1986) was used to estimate the parameter
(Table 2:).

Estimates of the step size paramgter  reached the lower bound of 0.10 for 1986 and 1987.
The initial survival rate parametgy  and the natural mortality rate paraygeter  were

essentially unidentifiable, e.g., increases in the initial survival rate simply translated into
increases in the natural mortality. The results in Table 2: were based on  arbitrarily set equs

to zero.

Filtered estimates of abundance by area were plotted by week and began, of course, as a
spatially smooth distribution that became increasingly irregular as catches were removed at
differential rates by area. At the end of the 16 week period most of the survivors were
concentrated in the natal area, but there were still some fish remaining at sea.

The initial survival estimatesy, can be compared to simple cohort analysis estimates

assuming no natural mortality, the sum of catches and hatchery returns divided by release siz
(Table 3:). The SSM estimates exceeded the simple estimates every year. Partially this is due
the SSM leaving some fish still at sea at the end of modeling period, extending the modeling

period to 18 weeks allows more fish to return to the natal area gnd decreases. Another

explanation is the incidental fishing mortality of fish fatally hooked or netted but not landed
which simple cohort analysis does not account for.

The initial location parameter estimatey, , is larger for 1985 than 1986 and 1987, indicating

a more northerly distribution for 1985. This is consistent with the catch recovery information.
For 1985 only 4% of the non-natal area recoveries were in areas south of the natal area, whils
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the results for 1986 and 1987 were 15% and 19%, respectively. This comparison is confound
somewhat by increases in relative effort in 1986 and 1987, but the magnitude of effort increas
was not as large as recovery increase.

The fishing mortality rates for both the U.S. and Canadian fisheries as a function of effort wer
calculated for a range of effort levels and found to be within reason (30 to 40% at most within
given unit of area).

The movement rates toward the natal area can be estimated from the expected step size. Aft
making corrections for the initial scaling of catch area locations, the expected step sizes per
week toward the natal area were 140 miles for 1985 and around 100 miles for 1986 and 1987

More complex submodels were tried as well, but sparse recovery matrices led to more
instability in the estimates; additional details and data are available in Newman (1993).

6 Discussion

Animal survival and migration was approached at the individual animal level with a
decomposition into the three components of initial location, survival, and movement. Various
explanations for individual animal movement and mortality can be postulated for each
submodel. Using observations about actual behavior, e.g., from telemetry data, statistical test
can be used to compare different theories.

State-space models and the Kalman algorithms are a useful means of estimating parameters
testing hypotheses when exact information is unavailable. Given historical parameter estimatt
managers of exploited populations could use SSMs to predict the impact of various harvesting
plans. Depending upon the temporal resolution of the harvest season, inseason management
changes could be made using currently available harvest information and the Kalman filter.

The application to salmon given here is arguably an improvement on currently used harvest
management models in that unreasonable catch transfers between extreme regions are unlik
On the other hand, the SSM formulation for the available data is highly model driven. A more
data driven application would be to use the type of mark and recovery data used by Hilborn
(1990) and Schwarz et al. (1993), for example, which was based on spatially-temporally
disjoint release and recovery sites. Incorporating available ocean environmental data, such a:
sea surface temperature, could prove useful as well in explaining, and perhaps predicting,
parameters relating to initial spatial location.
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Table 1: Estimated recoveries and troll fishing effort in 1985 for a coho release group (Tag
code 632861) summarized by thirteen catch areas and four week periods.

Estimated Recoveries Troll effort
Area/Time
1-4 5-8 9-12 13-16 1-4 5-8 9-12 13-16
NC 0 0 0 0 1 3 1 0
Br 0 0 0 0 14 30 47 58
CB 0 0 0 0 3164 3134 1223 439
Np 1 0 0 0 910 653 133 79
T 0 2 2 0 481 436 140 84
As 0 3 0 0 0 365 1 0
GH 8 3 0 358 1014 36 0 0
Qu 0 0 0 0 576 156 32 0
CF 5 3 7 0 202 1043 237 2
S\ 16 30 19 7 9129 12,918 10,078 2871
NVI 21 51 11 2 6730 7779 4230 1036
SBC 0 11 1 0 1789 2465 2457 58
NBC 0 0 0 0 8932 10,900 9411 4011

a. All recoveries in natal area are included.




Table 2: Individual animal survival and movement parameter estimates
for three years of coho salmon hatchery releases with standard errors
in parentheses.

Parameters 1985 1986 1987
Yo 2.15 (0.12) 4.71 (0.08) 1.72 (0.05)
YV, 8.26 (0.40) 5.33 (0.08) 5.44 (0.19)
Vi (US) 6.30 (1.32) 4.82 (0.41) 2.20 (0.38)
V; (Canada) 2.11 (0.16) 4.01 (0.14) 3.40 (0.23)
Ve 1.50 (0.15) 1.87 (0.06) 2.16 (0.12)
Y, 1.38 (0.51) 0.18(0.03) 0.18 (0.05)

a. Parameter estimate at lower bound.

b. .ibid

Table 3: Comparison of initial survival rateéyo , With cohort analysis (with
Ocean and Natal Area 1985 1986 1987
Recoveries 567 1763 839
Releases 45,404 50,876 63,360
Cohort analysis 1.25% 3.46% 1.32%
SSM (16 weeks) 2.15% 4.71% 1.72%
SSM (18 weeks) 1.70% 4.52% 1.43%

:O)
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