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1 Introduction 

Many scientific investigations are concerned with measuring or modeling the length of time before 

an event occurs. Such data may be referred to as “time to event data,” “failure time data,” or 

“survival data,” depending on the field. Efforts to analyze these types of data have spawned an 

array of statistical analysis methods owing to the variety of data-generating processes and special 

study design limitations across fields. For example, the practice of reliability modeling concerns 

measuring the time until system or equipment failure (Blischke and Murthy 2011) and may be used 

to determine when maintenance or replacement is advisable. The related field of survival analysis 

concerns measurement of time until death while also accounting for study subjects that survive past 

the end of the study (Hosmer et al. 2008). In fish and wildlife studies, it is sometimes necessary to 

model time to battery failure for biotelemetry transmitters (“tags”). Analysis tools developed for 

one application are often transferable to other fields. For example, the Weibull model, originally 

developed for reliability assessment (Leemis 1995), was later found useful for estimating the time 

interval between wildfires (McCarthy et al. 2001). However, the overwhelming number of 

alternative methods and models can make it difficult to decide on the most appropriate analysis 

tool, particularly for those working in fields without established analysis conventions. 

A typical analysis need in these fields is to model the time to event (e.g., failure) or model the 

probable status of an individual at a particular time (e.g., probability of survival to a specific time). 

A diversity of statistical failure time models have been developed for this purpose, including but 

not limited to the Weibull, Gompertz, log-normal, log-logistic, gamma, and vitality models (Li and 

Anderson 2009, 2013). Selecting among the possible models can be challenging because it requires 

both fitting multiple models and ranking their relative fit. Models that arise from unrelated 

statistical families can cause additional difficulties in ranking. Skalski and Whitlock (2020) 

developed a novel performance metric for ranking alternative models that is valid even when 

comparing models from different statistical families and also presented a general lack-of-fit test 

applicable to different failure time models. Although these methods were presented in Skalski and 

Whitlock (2020), until now implementing them has required the user to draw on multiple software 

packages and to write their own code. 

The failCompare R package was developed to easily implement the model fitting, ranking, and 

lack-of-fit tests for nine different failure time models as presented in Skalski and Whitlock (2020). 

We selected the open-source programming language and coding environment R (R Core Team 

2020) as the platform for this tool because it is the most common programing environment used in 

fisheries and the broader ecological research community (Lai et al. 2019; Figure 1). It is also 

multiplatform and can be easily run using the Windows, Mac, or Linux operating systems. We have 

designed the package to require a minimal level of programming skill for users to operate. The 

output from the failCompare package may be used independently or as input to the cbrATLAS R 

package (in development), which provides estimation of survival from active tag studies in fish and 

wildlife investigations. The failCompare package focuses on investigations that measure failure 

time by monitoring study subjects over a defined period and recording the duration until failure and 

is not intended for analysis of life tables. 
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Figure 1. The four most commonly cited statistical analysis programs in  Ecological Society of 

America Journals from 1990–2013 (Touchon and McCoy 2016). 

2 Failure Time Models  

Prior to explaining the workings of the failCompare package we lay a theoretical foundation for 

failure-time models in general. Although not exhaustive, this description of principles and 

techniques provides an appropriate background for understanding the tools in the package. This 

section also establishes consistent terminology and notation. With some minor exceptions, we use 

the language of “failure” instead of “survival” because it applies to a broader set of data types (e.g., 

death is frequently defined as a type of failure). 

2.1 Theoretical Basis 

We consider time to failure to be a nonnegative random variable 𝑇 with an underlying probability 

distribution. This distribution can be transformed into a monotonically decreasing function from 1 

to 0 defined over time (𝑡) as 𝑃(𝑇 < 𝑡). In particular if the probability distribution of failure time 

has a continuous distribution 𝑓(𝑡), then the probability of failing prior to time 𝑡 is calculated as the 

value of the cumulative distribution function, 𝐹(𝑡): 

𝐹(𝑡) = ∫ 𝑓(𝑡) 𝑑𝑡.

𝑡

0

 
(1) 

The probability of not having failed by time 𝑡 is then:  

𝑆(𝑡) = 1 − 𝐹(𝑡),  
(2) 

known as the survival function. Another useful means of characterizing the failure process is the 

hazard function, defined as: 
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ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
. 

 
(3) 

The hazard function describes how prone a subject is to fail at time 𝑡, conditional on not having 

failed up until that point. The shape of this function can be especially helpful for interpreting how 

the relative risk of failure changes over time. The probability distribution, survival, and hazard 

functions are mathematically equivalent, so knowledge of any one can be used to derive the others.  

2.2 Failure Time Modeling in Practice 

2.2.1 Calculating the Sample Survival Function 

The initial step in analyzing failure time data is to transform observed data into a discrete sample 

survival function 𝑆̂(𝑡). If failure of all subjects occurs within the observation period and the failure 

time is known precisely, then 𝑆̂(𝑡) is defined as a discontinuous function that steps downward at 

each unique failure time increment: 

𝑆̂(𝑡) = 
Count of observations > t

𝑛
, 

(4) 

where 𝑛 is the total number of observations and 𝑆̂(𝑡) has a constant value between observed failure 

times. When a portion of the study subjects are removed prematurely, or the investigation concludes 

prior to the failure of all subjects, then this estimator is unsuitable. This is because although some 

of the study subjects do not have a known failure time, these incomplete records still provide 

information about the minimum time the subjects persisted without failure. This type of data 

complication is known as censoring, specifically “right censoring.” Another possibility is “interval 

censoring,” which occurs when some study subjects are missing observed failure times but were 

nevertheless known to have failed between monitoring points. For more information on censoring, 

see the “censored data” section below. 

When either of these forms of censoring are present the product-limit estimate of sample survival 

probability should be used:  

𝑆̂(𝑡) = ∏ (
𝑛 − 𝑖

𝑛 − 𝑖 + 1
)

𝑡(𝑖)<𝑡

   
(5) 

where   𝑛 = sample size, 

𝑖 = number of failures before time t.  

This is known as the Kaplan-Meier survival estimate (“K-M estimate” hereafter) and is distinctive 

in that it is based on a maximum likelihood approach but does not actually assume a particular 

probability distribution (i.e., nonparametric; Kaplan and Meier 1958). The estimator can 

accommodate censored observations because estimates are based on a chain of conditional 

probabilities rather than the fraction of the total subjects yet to have failed. These Kaplan-Meier 
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estimates serve a descriptive purpose and may be used to compare multiple groups in a study. They 

also form a basis for examining the fit of parametric models (Kalbfleisch and Prentice 2011).  

2.2.2 Parametric Models of Failure Time 

There are many reasons why one would want to characterize a failure-time process using a 

parametric distribution. If the model fits the data well, then the parameter estimates can provide a 

succinct description of how likely failure is to occur or how the failure rate may change over time 

and/or across multiple groups. Arguably, a smooth function better resembles the underlying failure-

time process for a population, as opposed to the K-M survival function where the position of 

downward steps is necessarily defined by particular observations. 

In this section, we survey the failure time models discussed in Skalski and Whitlock (2020). All of 

the following models assume that 𝑡 ≥ 0.  The simplest choice of failure time model is based on the 

exponential distribution with parameter 𝜆 and density function: 

𝑓(𝑡) =
1

𝜆
𝑒

−(
𝑡
𝜆

)
, 𝜆 > 0 

 
(6) 

and therefore the survival function is  

𝑆(𝑡) = 𝑒
−

𝑡
𝜆. (7) 

Interestingly, terms in the hazard rate cancel resulting in a constant hazard function defined by 1 𝜆⁄  

(Figure 2). Two noticeable features of this model are that failures occur immediately and the 

instantaneous risk of failure at any moment is unaffected by the passage of time (“memoryless”). 

The exponential model is therefore inappropriate for data sets in which failures are accumulated at 

a variable rate or with a noticeable delay after 𝑡 = 0.  

 

Figure 2. Exponential failure time model density (left), survival (middle), and hazard (right) 

functions with three different values of parameter 𝜆.  
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A more flexible model is the Weibull model, of which the exponential model is a special case. The 

survival function of the 2-parameter Weibull model with shape parameter 𝜆 and scale parameter 𝛽 

is: 

𝑆(𝑡) = 𝑒
−(

𝑡
𝜆

)
𝛽

,         𝜆, 𝛽 >  0. 
(8) 

The probability density of the Weibull model can reach an apex, meaning that rate of failures will 

accelerate or decelerate over time (Figure 3). The exponential model arises in cases where 𝛽 = 1. 

 

Figure 3. Weibull failure time model density (left), survival (middle), and hazard (right) functions 

with three different values for shape (𝛽) and scale parameters (𝜆). 

There are several other models based on familiar probability distributions, which are intuitive 

extensions of simpler models or special cases of more general distributions. We briefly introduce 

these alternative models here and provide more complete definitions in the appendix (Table 1). The 

Gompertz model and 3-parameter Weibull model are extensions of the two distributions discussed 

above. The Gompertz model extends the exponential model by defining the hazard rate as a log-

linear function of parameters 𝛾 and 𝑏: 

ℎ(𝑡) = 𝑒𝛾+𝑏𝑡. (9) 

The 2-parameter Weibull model can be further extended to a 3-parameter version: 

𝑆(𝑡) = 𝑒
−(

𝑡−𝛾
𝜆

)
𝛽

,
         𝛾 >  0  

(10) 

with a threshold (or “guarantee”) parameter γ defining an initial “failure free” portion of the curve.  

Also included in the failCompare package are the log-normal, log-logistic, and 2-parameter and 3-

parameter (“generalized”) gamma models. Log-normal and log-logistic models are well suited to 

failure processes that have an initially increasing and then decreasing hazard function, with the log-

logistic model having a convenient closed-form definition for its survival function. The hazard 

function of the 2-parameter gamma model approaches an asymptote as 𝑡 → ∞. The 3-parameter 

gamma distribution is the most flexible model described so far and incorporates the exponential, 
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Weibull, and 2-parameter gamma as special cases (Kalbfleisch and Prentice 2011). All the above-

mentioned models except the Gompertz and 3-parameter Weibull represent special cases of the 

generalized F distribution (not implemented in failCompare). See Kalbfleisch and Prentice (2011) 

for a full description. 

Among the nine models compared in Skalski and Whitlock (2020) and implemented in 

failCompare, the vitality models are distinct because they do not represent an adoption of a familiar 

probability distribution for descriptive purposes (Anderson 1992). Rather, the vitality survival 

functions were derived by explicitly considering the two processes that contribute to the death of 

organisms: (1) stochastic decline in vitality over a lifetime (intrinsic) and (2) chance external events 

that cause early deaths (extrinsic). Under these models, death occurs at the time when an 

individual’s vitality, engaging in a random walk downward, crosses the zero line. The two versions 

of the vitality model included in the failCompare package are the Vitality 2009 model (Li and 

Anderson 2009) and the Vitality 2013 model (Li and Anderson 2013). See the appendix subsection 

on vitality models for more information.  

Table 1.  The failCompare package’s default failure time models and their basic characteristics. 

Detailed descriptions of these models are available in the appendix.  

Model Family # Parameters 

2-parameter 

Weibull 
Generalized F 2 

3-parameter 

Weibull 
Other 3 

Gompertz Other 2 

Log-normal Generalized F 2 

Log-logistic Generalized F 2 

Gamma Generalized F 2 

Generalized 

Gamma 
Generalized F 3 

Vitality 2009 Vitality 4 

Vitality 2009 Vitality 4 

 

2.3 Comparing Models 

Alternative models represent various tradeoffs in terms of flexibility, ease of fitting, and 

interpretation. Models with a greater number of parameters are more flexible but may overfit the 

data and are prone to estimation problems with small data sets (e.g., failed convergence and 

inability to compute the standard errors of parameters). 

When faced with this type of model comparison problem, a commonly used criterion for model 

selection is the Akaike Information Criterion (AIC; Burnham and Anderson 2007). However, some 

types of models cannot be compared with this criterion because of differences in how the 

likelihoods are formulated (Burnham and Anderson 2007, p. 307). Moreover there are differing 

opinions on how censored observations should be counted when calculating the second order AIC 

criterion, which includes sample size 𝑛 (AICc; Liang and Zou 2008). Considering these potential 
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complications and initial testing that confirmed the incompatibility of likelihood formulations 

between vitality and other models, AIC did not appear to be a suitable criterion comparing the 

variety of models supported by the package.  

Instead, we created a more intuitive performance measure based on the squared difference between 

empirical K-M estimates of the survival function and parametric model predictions, adjusted by a 

penalty for complexity that incorporates the sample size and number of parameters in a manner 

similar to AICc. This goodness-of-fit (GOF) statistic is the average squared deviation between the 

Kaplan-Meier function and the fitted model values of 𝑆(𝑡) across the n observed failure times 

(Figure 4):  

 

𝐺𝑂𝐹 =
∑ (𝑆̂(𝑡𝑖) − 𝑆(𝑡𝑖))

2𝑛
𝑖=1

(𝑛 − 𝑝 − 1)
   (13) 

where    𝑆̂(𝑡𝑖) = survival value from parametric model at time t for the ith failure (𝑖 = 1, … , 𝑛),  

𝑆(𝑡𝑖) = K-M survival function estimate at time t for the ith failure (𝑖 = 1, … , 𝑛),   

𝑛 = sample size (including censored observations)  

𝑝 = number of fitted model parameters.  

The model with the smallest GOF value within a set of candidates is considered most suitable.   

 

Figure 4. Fitted parametric survival function and observed deviations in survival values at the time 

of a failure event. The deviation in survival values is calculated at each time step in the K-M curve. 

Reproduced from Skalski and Whitlock (2020). 

2.4 Lack-of-Fit Testing 

The GOF metric provides a measure of relative goodness-of-fit to compare alternative models but 

does not indicate the suitability of the model in general. A clear choice for testing the suitability of 

the estimated survival function is to apply the one-sample Kolmogorov Smirnov test (Sokal and 
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Rohlf 1995). This test is a common nonparametric method for comparing empirical versus 

theoretical cumulative distribution functions. For the failure time model evaluation, the test statistic 

is the absolute value of the largest discrepancy between 𝑆̂(𝑡𝑖) and 𝑆(𝑡𝑖) anywhere along the fitted 

curve, i.e., 

𝐷 = MAX
𝑖=1,…,𝑛

|𝑆̂(𝑡𝑖) − 𝑆(𝑡𝑖)| . (12) 

However, the critical region of the test is not valid for cases in which the model parameters are 

estimated from data, as in the application here, rather than specified a priori. Instead we used the 

simulation-based testing procedure described in Lilliefors (1967). This process involves first 

computing the observed test statistic (𝐷𝑜𝑏𝑠) using equation (12) and then repeatedly simulating 

datasets of length 𝑛 from the estimated distribution and calculating and storing simulated 

values (𝐷𝑠𝑖𝑚) to approximate the sampling distribution of the test statistic. After accumulating 

sufficiently large sample of 𝐷 values (e.g., 50,000), the P-value is computed as the proportion of 

simulated samples that exceed 𝐷𝑜𝑏𝑠.  

2.5 Censored Data 

In its current form, the package is equipped to handle two common forms of right-censored data. 

Interval-censored data and left-censored data are not supported. The two types of censoring 

accommodated by the software are: Type I, single right censoring, where all subjects beyond a 

specific time-point are considered removed, and Type II, progressive right censoring where some 

study subjects are censored prior to termination of the study (Lee and Wang 2003). See example 3 

for a demonstration on how to specify censored data types. 

 

Figure 5. Illustration of a small failure time data without censored observations (left), and alternate 

versions with Type I (middle) and Type II censoring (right). Horizontal line segments represent the 

hypothetical lifespans of 15 study subjects ordered by their longevity; dotted sections represent 

periods when an individual’s status was unobserved. Closed points at the end of lines represent 

observed failure times, and open points represent the time where the observation was censored. 
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Fitting a parametric model to data with right censoring requires modification of the likelihood 

function, which is maximized in obtaining parameter estimates. The likelihood value (𝐿) for a 

model with observed failure times for all 𝑛 study subjects relies on the density function of the 

model’s distribution, and is simply: 

𝐿 = ∏ 𝑓(𝑡𝑖)

𝑛

𝑖=1

. 

Because right-censored observations imply only that the study subject lasted a minimum duration 

without failure, these observations need to be handled separately in the likelihood by evoking the 

survival function based on the same underlying parameters. For the Type I case, the likelihood 

combining the two types of information (pre-censoring and post-censoring) is: 

𝐿 ∝ [∏ 𝑓(𝑡𝑖)

𝑟

𝑖=1

] ∙ 𝑆(𝑡𝑒𝑛𝑑  )𝑛−𝑟 , 

where 𝑟 is number of study subjects with observed failure times and 𝑡𝑒𝑛𝑑 is the time at which the 

study was terminated. A more general version of the likelihood which encompasses the Type II 

(progressive) censoring case is  

𝐿 ∝ ∏ 𝑓(𝑡𝑖)

𝑟

𝑖=1

∏ 𝑆(𝑡𝑖
+)

𝑛−𝑟

𝑖=1

 

where 𝑡𝑖
+ denotes potentially differing times where each of the 𝑛 − 𝑟 observations was censored. 

It should be noted that this approach assumes an independent censoring mechanism. 

3 Using failCompare  

The focus of this package is statistical modeling of failure time data resulting from monitoring 

study subjects over a defined period. In this section, we introduce the package’s functions, provide 

instructions on package installation, and work through several examples.  

3.1 Overview of Functions 

The failCompare package includes functions for several stages of analysis of failure time data: 

fitting the failure time models, ranking the models, and assessing lack-of-fit. There are several 

functions that can be used to estimate the sample survival function and for preliminary plotting 

(fc_surv() and  fc_plot()). Individual models or sets of models are created using the fc_fit() function, 

which has two required arguments: (1) the data set and (2) a text string of one or more model names. 

This function fits the specified model(s) and stores the information in an object. Additional 

information on these models can be obtained by calling the failure model object inside the generic 

summary() function and the model fit can be visualized using plot(). The second stage of analysis 
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ranks models using the GOF statistic via the function fc_rank(). Convenience functions are provided 

to assist the users by combining singular models (fc_combine()) into model lists for ranking or by 

selecting a single model (fc_select()) from a list. Finally, the fc_test() function performs the lack-of-

fit test described above for any of the default models. 

3.2 Relation to Other Software 

The failCompare package depends on code from several other R packages: survival (Therneau and 

Grambsch 2000), flexsurv (Jackson 2016), and the vitality package. The vitality package was 

developed in connection with members of Columbia Basin Research (Passolt et al. 2018). 

Documentation and source code for these packages are available at: 

 https://cran.r-project.org/web/packages/survival/index.html  

 https://cran.r-project.org/web/packages/flexsurv/index.html 

 https://cran.r-project.org/web/packages/vitality/index.html 

In the past Columbia Basin Research has provided a tool for adjusting survival models using tag 

life in the desktop application ATLAS (http://www.cbr.washington.edu/analysis/apps/atlas). The 

package failCompare provides the same tag-life fitting functions as ATLAS in addition to offering 

a greater selection of failure-time models and additional model ranking and testing capabilities. 

The failCompare package stands alone but is also designed to interface with the forthcoming 

cbrATLAS R package, which will be a script-based version of the desktop application. 

3.3 Example Data Sets 

Most examples we provide here concern modeling the time until electronic tag failure. Accurately 

modeling the tag-failure process is a critical step in many fish and wildlife studies based on 

telemetry tags (i.e., transmitters). In these studies, acoustic tags are activated and implanted in fish 

so their movement and survival can be monitored as they move past receiver stations. Tags 

implanted in living study subjects eventually fail because of battery discharge, and sometimes 

prematurely due to manufacturing defects. Investigators need an estimate of the longevity of these 

tags to account for the tag-failure process in survival models. For this reason, a representative 

sample of the batch of tags used in the study is held out and used to measure the tag failure rate as 

a function of time in what is known as a tag life study (Townsend et al. 2006). The tags in the tag 

life study are configured the same as those implanted in fish, placed in water with a similar thermal 

environment, and monitored continuously by one or more nearby receivers. 

3.4 Handling Censoring 

In its current form (version 1.0), the failCompare package is equipped to handle two common forms 

of right-censored data: Type I and Type II, see the “Censored Data” section above for technical 

details. Type I censoring is conveniently handled by specifying the value after which all 

observations will be considered censored (rc.value, i.e., identifying the minimum failure time of the 

https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/flexsurv/index.html
https://cran.r-project.org/web/packages/vitality/index.html
http://www.cbr.washington.edu/analysis/apps/atlas
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observations). Type II censoring requires specifying a censorID argument the same length as the 

time argument the censor ID argument indicates whether individual times describe the subject 

failure time or the subject censoring time.  See Example 3 below for a demonstration on how to 

account for these two forms of censoring using failCompare’s model-fitting and plotting functions. 

3.4.1 Downloading the failCompare package 

To download the package, navigate to the Columbia Basin Research website and click on the 

hyperlink for the latest version at: http://www.cbr.washington.edu/analysis/apps/failCompare (as 

seen below). There is no need to unzip the compressed folder after downloading it to your hard 

drive. 

 

3.5 Getting Started 

We assume that the user has previously installed program R and is familiar with basic operations 

(e.g., importing data, basic plotting). Program R can be downloaded freely at: https://cran.r-

project.org. There are many freely accessible instructional books and online resources that explain 

the use of R. The user might also want to consider installing RStudio (https://www.rstudio.com), a 

free program that serves as wrapper for the basic R graphical user interface with a built-in text 

editor. 

3.5.1 Installation within R 

To install from within the base R graphical interface, select the option “install package(s) from 

local files…” from the “Packages” dropdown menu and then navigate to the compressed folder that 

was downloaded. Alternatively, to install failCompare from within RStudio, select the “Packages” 

tab and click the “Install” button. From there, choose the “Package Archive File (.zip;tar.gz)” and 

then navigate to the compressed folder that was downloaded, select it, and click ”install” 

http://www.cbr.washington.edu/analysis/apps/failCompare
https://cran.r-project.org/
https://cran.r-project.org/
https://www.rstudio.com/
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3.5.2 Loading the failCompare package 

Once the package is installed, it must be loaded into the working environment before it can be used. 

The installation needs to be performed only once, but the package must be loaded during each R 

session using the library() command: 

> library(failCompare) 

3.5.3 Example data 

Four example data sets are provided with the failCompare package and are used here. Two of the 

example data sets contain failure time data of microacoustic transmitters (“tags”) used in studies of 

migration survival of juvenile salmon. The third and fourth example data sets contain survival times 

of fish in a toxicology study and rats in a cancer study. The data sets are named “sockeye,” 

“chinook,” “trout,” and “pike.” 

3.6 Example 1: Fitting, Visualizing, and Ranking Alternative Failure Time 

Models 

Our first example uses the “sockeye” data set that comes with the package. 

3.6.1 Preparation 

3.6.1.1 Loading data 

Below we use the data() command to load the example data set “sockeye.” The data set contains 

only one variable, days, which identifies the failure times of acoustic tags in a tag life study. The $ 

is used to extract the values in a labeled column. We will store this variable in the vector object 

taglife. 

> data(sockeye) 

> taglife=sockeye$days   # vector of tag failure times 

Individual observations are displayed in the table below. 

6.12 14.29 15.04 15.50 15.75 16.08 16.25 16.37 16.71 17.71 

10.42 14.46 15.12 15.50 15.79 16.08 16.25 16.54 16.79 17.71 

12.33 14.67 15.21 15.62 15.87 16.17 16.29 16.71 16.83 17.96 

13.62 14.79 15.33 15.67 16.04 16.17 16.29 16.71 17.42 18.04 

13.62 14.96 15.42 15.75 16.08 16.17 16.37 16.71 17.58 18.50 

3.6.1.2 Initial data visualization 

We begin this example by computing the sample survival fraction and visualizing the data using 

basic R plotting tools. We will start by computing the sample survival function using the function 
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fc_surv(). Because there are no censored observations in the data set we can compute the sample 

survival function 𝑆̂(𝑡) using equation 4. The function fc_surv() displays both a histogram of the 

failure times and the sample survival function over time (t). 

> S=fc_surv(taglife) 

 

> fc_plot(time=taglife,surv=S) 

 

There is one failure relatively early (~6 days) in the study and a peak between 15–20 days. The 

gradual decrease in survival preceding a cascade of failures indicates that a model with a variable 

hazard rate function is suitable. We start by fitting a 2-parameter Weibull model. 

3.6.2 Fitting individual models 

3.6.2.1 2-parameter Weibull model 

The first step is to use the function fc_fit() with the vector of failure times for the time argument and 

"weibull" for the model argument.  

> weib_mod=fc_fit(time=taglife,model="weibull") 

Output produced by the function is stored in the object weib_mod. The accepted in the model 

argument are listed in the appendix of this manual or can be found in the help documentation for 

the function (accessible by entering ?fc_fit in the R console). 

Entering weib_mod into the console prints some of the output, including parameter estimates and 

standard errors. 

> weib_mod 
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weibull failure model object  
 
Parameter estimates: 
           est        se 
shape 12.08980 1.3689716 
scale 16.35115 0.1986745 

Placing the model object inside the plot() function produces a scatterplot of the fitted Weibull model 

(red line) versus the observations (“+” symbols) that reflect downward steps in 𝑆̂(𝑡) . 

> plot(weib_mod) 

 

Dashed lines between the K-M estimates can be added by including the argument km=TRUE, and 

confidence intervals for the K-M model can be added with the argument km.ci=TRUE (see below). 

An alternative plot may be created with the argument type="resid", showing the difference between 

the parametric model and the K-M model (i.e., “residuals at each observed failure time”). The 

residual option can be helpful for determining when the parametric model estimates are above or 

below the observations. For example, the plot on the right shows that the Weibull model 

overestimates survival in the first half of the study. 

> plot(weib_mod,km = TRUE,km.ci = TRUE) 

> plot(weib_mod,type = "resid",km = TRUE,km.ci = TRUE) 
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The Weibull model appears to be a pretty good fit for the data, although the fitted line does weave 

through the data over time. There may be a better alternative, so next we will try fitting the Vitality 

2009 model. 

3.6.2.2 Fitting the Vitality 2009 model 

The Vitality 2009 model is estimated using fc_fit() in much the same way as before but now with 

"vitality.ku" entered into the model argument. 

> vit09_mod=fc_fit(time=taglife,model="vitality.ku") 

> vit09_mod 

 

vitality.ku failure model object  
 
Parameter estimates: 
         est        se 
r 6.2346e-02 0.0046263 
s 8.5906e-08       NaN 
k 5.7006e-03 0.0231610 
u 6.4295e-02 0.0609970 

Printing vit09_mod displays the four parameter estimates for the model. We see that the standard 

error of the 𝑠 parameter could not be estimated.  

We will now visualize the model fit as before. 

> plot(vit09_mod,km = T,km.ci = T) 

> plot(vit09_mod,type = "resid",km = T,km.ci = T) 
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This model appears to conform to the data slightly better than the Weibull model. However, it is 

unclear whether the Vitality 2009 model is actually more parsimonious (i.e., does the improvement 

in model fit warrant a model with two additional parameters?). We will rank the performance of 

these two models using the GOF metric to help answer this question. First we will predict tag 

survival for each model. 

3.6.2.3 Obtaining predicted survival from models using fc_pred() 

Once a model object is created, you can use it to predict the survival fraction at a given time. This 

is accomplished by passing the model object and the time for which we would like survival 

predicted to ofc_pre. For example, we will predict the survival fraction at 6, 12, 15, and 18 days 

under each of the models estimated above. 

> pred_times=c(6,12,15,18) # days whose survival we wish to predict 

 

# Weibull model predictions 

> pred_s_weib=fc_pred(mod_obj=weib_mod,times=pred_times) 

> pred_s_weib 

[1] 0.99999455 0.97653702 0.70293295 0.04097672 
 

# Vitality model predictions 

> pred_s_vit=fc_pred(mod_obj=vit09_mod,times=pred_times) 

> pred_s_vit 

[1] 0.96637473 0.93383827 0.77416444 0.02585396 
 

We can see from these predictions that the survival estimates are lower for the vitality model in all 

but the 15-day estimate. 
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3.6.3 Model comparisons 

3.6.3.1 Combing failure models in a list 

The models need to be placed in a list before they can be ranked. There are two options for doing 

this: combining the two models into a list() object and running fc_combine, or rerunning fc_fit while 

specifying a vector of more than one model name using the combine function c(). 

> fmods=fc_combine(list(weib_mod,vit09_mod)) # option 1 

 

# OR 

 

> fmods=fc_fit(taglife,c("weibull","vitality.ku")) # option 2 

Printing fmods provides a short description of the models in the list and a message indicating that 

the model list can be ranked. Placing the model list object inside summary() provides details on the 

parameter estimates for each model. 

> fmods 

Failure model list object 
 
Contains the following 2 models:  
 weibull ; vitality.ku 
 
*use this object to compare models using the function: fc_rank() 

 

Plotting fmods produces a survival function plot with the raw K-M estimates and the two models 

labeled. Dashed lines connecting K-M estimates can be added with the argument km=T. 

> plot(fmods) 
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3.6.3.2 Ranking failure time models based on GOF measure 

Executing fc_rank()prints a table ranking the models in the list, and creates a new model list object 

with the GOF ranking information. The fmods_R object stores this information and it can be printed 

by the user at any time. 

> fmods_R=fc_rank(fmods) 

 

Candidate models ranked by goodness of fit measure: 
 
        model    SSE_KM  n npars denom    GOF 
1 vitality.ku 0.0502537 50     2    47 0.0011 
2     weibull 0.1824184 50     4    45 0.0041 

The Vitality 2009 model has the lowest GOF score, and therefore ranks above the 2-parameter 

Weibull. If these were the only two models being considered, then we would select the Vitality 

2009 model and stop here. 

The GOF measure is used to compare and rank models based on their fit to the data. It is a relative 

measure, so it is possible for a model to have a high GOF rank compared to the other models but 

to still be a poor fit for the data; this happens if none of the models fit well. The overall fit of a 

model to the data is assessed in a lack-of-fit test as demonstrated in Example 2 (Section 3.7). 

3.6.4 Simultaneous model fitting 

A shortcut for fitting all nine parametric models in failCompare is to type "all" into the model 

argument of fc_fit(). Printing fmods_all tells us the nine models were fit. 

> fmods_all=fc_fit(taglife,model="all") 

 

Fitting all available parametric survival models 
fmods_all 
Failure model list object 
 
Contains the following 9 models:  
 weibull ; weibull3 ; gompertz ; gamma ; lognormal ; llogis ; gengamma 
; vitality.ku ; vitality.4p 
 
*use this object to compare models using the function: fc_rank() 

3.6.4.1 Ranking the full set of parametric models 

Executing fc_rank on fmods_all returns a table ranking all nine models and stores all the information 

in a ranked model list object. 

  



P a g e  | 19 

 

> fmods_all_R=fc_rank(fmods_all) 

 

Candidate models ranked by goodness of fit measure: 
 
        model     SSE_KM  n npars denom    GOF 
1 vitality.ku 0.05025370 50     4    45 0.0011 
2 vitality.4p 0.05297191 50     4    45 0.0012 
3    gompertz 0.17255657 50     2    47 0.0037 
4     weibull 0.18201868 50     2    47 0.0039 
5    weibull3 0.18241771 50     3    46 0.0040 
6    gengamma 0.21987838 50     3    46 0.0048 
7      llogis 0.24616132 50     2    47 0.0052 
8       gamma 0.74189324 50     2    47 0.0158 
9   lognormal 0.89427673 50     2    47 0.0190 

The top ranking model is labeled vitality.ku which corresponds to the Vitality 2009 model. We can 

further see that the vitality.4p (Vitality 2013) model is ranked a close second and that the Gompertz 

model beat out the 2-parameter Weibull model that we considered before. 

Placing a ranked model list inside the plot() function displays up to three models at a time; model 

rank is shown in parentheses after the model name. The three top-ranking models are displayed by 

default, but specific subsets can also be obtained by supplying a vector of up to three names to the 

model argument. Below is a default plot and a plots of sets of three models that shared the middle 

and lowest rankings (top right and bottom left). 

 

> plot(fmods_all_R,main="top ranked") 

 

> plot(fmods_all_R,model=c("weibull","weibull3","gengamma"), 

main="middle ranked") 

 

> plot(fmods_all_R,model=c("llogis","lognormal","gamma"), 

main="bottom ranked") 
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Figure 6. Plots of the top-ranked, middle-ranked, and bottom-ranked three models for the 

“sockeye” example data set. The top ranked model all fit the data well, especially after the 15-day 

mark, whereas the poorest ranking models depart from the data significantly. The Vitality 2009 

model is unique in that it is the only model with an initial linear decline in survival that intersects 

with early failures in the “shoulder” of the curve, so it appears to be the best choice.  
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3.7 Example 2: Testing Methods for Failure Time Models 

In this example, we demonstrate the testing procedures contained within the failCompare package. 

The first of these, fc_diff(), is used to test for differences among groups in a combined failure-time 

data set. The second test, fc_test(), assesses the general lack-of-fit of a model; this is an absolute 

measure that is relevant to a single model, unlike the relative measure of model performance (i.e., 

GOF measure; Skalski and Whitlock 2020). 

If you are continuing to this example from the first it may be wise to restart R and reload the 

failCompare package. This will prevent any confusion resulting from accidentally accessing 

previously defined objects in the environment. Alternatively, you can remove all objects in the 

workspace by running the command: rm(list=ls()) (with nothing inside of it). The example dataset 

for this task is titled “chinook.” Similar to example 1, it contains data describing the time until 

acoustic tag deactivation without censoring. As before, we can load the dataframe into the R 

environment by using data(). The structure of the data is examined below using the function str(). 

> data(chinook) 

> str(chinook) 

'data.frame': 80 obs. of  2 variables: 
 $ days  : num  18.7 22.7 33.3 34.1 34.4 ... 
 $ season: Factor w/ 2 levels "spring","summer": 1 1 1 1 1 1 1 1 1 1 ..
. 

This reveals that we are working with a dataset with 80 observations. This time there is a second 

column identifying the group to which each tag belongs, a factor variable called “season” consisting 

of two groups: “spring” and “summer.” A frequency table for this second column further indicates 

that there are 33 tags in the spring group and 47 tags in the summer group. 

> table(chinook$season) 

 

spring summer  
    33     47 

We would like to know whether it is most appropriate to pool all tags when modeling tag failure or 

model each group separately. 

To begin, we visualize the data using a histogram and a plot, notice the additional argument for 

group that distinguishes between groups in the plots. 

> surv=fc_surv(chinook$days) 

> fc_plot(chinook$days,surv,group = chinook$season) 



P a g e  | 22 

 
These plots show a bimodal distribution of the combined failure times and indicate that the spring 

tag failure times are earlier on average. The survival function is also far from smooth, particularly 

before day 45, when the majority of “spring” group of tags failed. Given that the failure time 

distribution appears to differ by season it may not be justified to pool them, but how do we know 

for sure? 

3.7.1 Log-rank test for comparing groups 

Fortunately, failCompare includes a function for performing a log-rank test, which tests the null 

hypothesis that two groups of observations arise from the same distribution. A log-rank test can be 

performed by providing the name of the dataframe and specifying the failure time (time) and a 

categorical grouping variable (group). The test is carried out using the survival package, assuming 

a 𝜒2 distribution for the test statistic. 

 

> fc_diff(data=chinook,time="days",group="season") 

Call: 
survdiff(formula = f1, data = data) 
 
               N Observed Expected (O-E)^2/E (O-E)^2/V 
season=spring 33       33     10.9     44.96      63.9 
season=summer 47       47     69.1      7.08      63.9 
 
Chisq= 63.9  on 1 degrees of freedom, p= 1e-15 

 

The output shows the observed (O) versus the expected (E) values and the test statistic Chisq. The 

P-value for the test statistic is extremely small (le-15), indicating that there is significant evidence 

to reject the null hypothesis that the failure time distribution is the same for the two seasons. 

We now proceed by fitting separate models to the spring and summer groups, which we denote 

with the suffix _SPR and _SUM, respectively. First, we subset the data into groups, and then we fit 

the value and rank all models for all groups. 

# Subsetting the groups 

> chn_SPR=subset(chinook,season=="spring") 

> chn_SUM=subset(chinook,season=="summer") 
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3.7.2 Ranking models separately for two groups 

Next, we fit the nine different default models in failCompare to each dataset separately by entering 

"all" into the model argument 

 

# Ranking of models for season="spring" 

> chnSPR_mods=fc_fit(time=c(chn_SPR$days,42,42.4),model="all") 

 

Fitting all available parametric survival models 

 

> chnSPR_mods_R=fc_rank(chnSPR_mods) 

 

Candidate models ranked by goodness of fit measure: 

        model    SSE_KM  n npars denom    GOF 
1      llogis 0.5148720 33     2    30 0.0172 
2 vitality.ku 0.5827913 33     4    28 0.0208 
3       gamma 0.6258051 33     2    30 0.0209 
4   lognormal 0.6398952 33     2    30 0.0213 
5    gengamma 0.6537550 33     3    29 0.0225 
6 vitality.4p 0.6359227 33     4    28 0.0227 
7    weibull3 0.6832296 33     3    29 0.0236 
8     weibull 0.7103504 33     2    30 0.0237 
9    gompertz 0.7849153 33     2    30 0.0262 

 

# Ranking of models for season="summer" 

> chnSUM_mods=fc_fit(time=chn_SUM$days,model="all") 

 

Fitting all available parametric survival models 
 

> chnSUM_mods_R=fc_rank(chnSUM_mods) 

 

Candidate models ranked by goodness of fit measure: 

         model     SSE_KM  n npars denom    GOF 

1 vitality.ku 0.01928644 47     4    42 0.0005 
2 vitality.4p 0.03373248 47     4    42 0.0008 
3    gompertz 0.12668419 47     2    44 0.0029 
4     weibull 0.16703594 47     2    44 0.0038 
5    weibull3 0.16704176 47     3    43 0.0039 
6    gengamma 0.19689311 47     3    43 0.0046 
7      llogis 0.23086554 47     2    44 0.0052 
8       gamma 0.86607690 47     2    44 0.0197 
9   lognormal 0.96823470 47     2    44 0.0220 

 

The rankings based on the GOF metric indicate that the log-logistic (llogis) and the Vitality 2009 

model (vitality.ku) provide the best fits to the spring and summer groups, respectively. 

Plotting the three top-ranking models for each season allows us to examine the quality of the fit. 

We can add a main title to each of the plots by providing a character string for the optional argument 

main. The function also prints a message reminding the user of the other models in the list that they 

are not seeing in the plot. 
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> plot(chnSPR_mods_R,main="spring") 

 

Additional models with rankings: weibull(4); weibull3(5); gompertz(6); 
lognormal(7); gengamma(8); vitality.4p(9) 

 

> plot(chnSUM_mods_R,main="summer") 

 

Additional models with rankings: weibull(4); weibull3(5); gamma(6); log
normal(7); llogis(8); gengamma(9) 

 

Looking first at the spring data, we see that although the log-logistic model is the highest ranking, 

it does not appear to fit the spring group all that well. Conversely, the Vitality 2009 model 

(vitality.ku) fits the summer data quite well, and even the second and third ranked models are 

competitive. We will select the vitality 2009 model from among the list of candidates using the 

fc_select() function and then print parameter estimates. 

 

> chnSUM_vit09=fc_select(mod_ls = chnSUM_mods_R,model = "vitality.ku") 

> chnSUM_vit09 

 

vitality.ku failure model object  
 
Parameter estimates: 
         est         se 
1 2.0898e-02 0.00098417 
2 6.3562e-03 0.00493800 
3 1.7174e-03 0.00665980 
4 1.5304e-06 0.00243200 

 

The obviously poor fit to the spring data should make us skeptical of the validity of the model, but 

it would be good to use a statistical test to confirm this.  

3.7.3 Kolmogorov-Smirnov test (simulation-based) 

We now examine the general lack-of-fit of the top model using a simulation-based Kolmogorov-

Smirnov test. This testing method was described in Lilliefors (1967) and was used to compare all 
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nine default models in failCompare in Skalski and Whitlock (2020). The test works by fitting a 

parametric model to the data, calculating a test statistic by which to compare data to the failure time 

model used to fit it, and then simulating random data sets of the same size and recomputing the test 

statistic to approximate the sampling distribution. Provided that enough samples are drawn, we can 

accurately approximate a P-value for the test by determining the proportion of the sampling 

distribution that is larger (i.e., more extreme) than the observed statistic. We perform this test using 

the command fc_test with the model argument matching the name of the top-ranking model for this 

population of tags, and the number of iterations (iters) set to 100,000. It may take up to a minute 

for the following code to run. If the argument plot=TRUE is included, you a histogram of the 

sampling distribution of the test statistic (D) is displayed, with a vertical red line denoting the 

observed value. The p-value of the test will be printed in the console and on the right side of the 

plot. 

> fc_test(times = chn_SPR$days,model = "llogis",iters = 100000,plot=TRUE) 

Results of a one-sample Kolmogorov-Smirnov test based on a simulation 
 
model =  llogis  
 
iterations =  1e+05  
 
observed test statistic 
 D[obs] = 0.2648246  
 
p-value =  0.01607 
 

 

The P-value below 𝛼 = 0.05 indicates that the observed data do not adhere to log-logistic model. 

It should be noted that the P-value may change slightly from run-to-run because of the inherent 

randomness of the bootstrap. The default number of iterations is 50,000. If the histogram of the 
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sample statistic is not smooth and/or the P-value varies significantly from run to run, the number 

of iterations should be increased. 

Because the log-logistic model was the best model available, it is reasonable to assume that there 

are no appropriate parametric models for describing the data; thus, it may be best to avoid 

interpreting a parametric model and proceed with interpreting the nonparametric K-M model 

(Section 3.11).  

3.7.4 Selecting the Kaplan-Meier model from a model list object 

An option for selecting the K-M model exists in failCompare if the user enters kaplan-meier into the 

model argument of fc_select(). 

> chnSPR_KM=fc_select(mod_ls = chnSPR_mods_R,model = "kaplan-meier") 

Printing the K-M model returns the estimates and confidence intervals for the cumulative survival 

to each unique failure time in the data set. 

> chnSPR_KM 

 

Kaplan-Meier estimates for increments between failure times 
    time        est         lcl       ucl 
1   0.00 1.00000000 1.000000000 1.0000000 
2  18.74 0.97142857 0.917774047 1.0000000 
3  22.70 0.94285714 0.869010963 1.0000000 
4  32.00 0.91428571 0.826091339 1.0000000 
5  33.00 0.85714286 0.748711879 0.9812772 
6  33.11 0.82857143 0.712664580 0.9633292 
7  33.13 0.80000000 0.677876107 0.9441253 
8  33.30 0.77142857 0.644136245 0.9238760 
9  34.08 0.74285714 0.611299632 0.9027271 
10 34.40 0.71428571 0.579261536 0.8807836 
11 34.58 0.68571429 0.547944329 0.8581238 
12 34.64 0.65714286 0.517289404 0.8348068 
13 34.70 0.62857143 0.487252103 0.8108781 
14 34.80 0.60000000 0.457798406 0.7863723 
15 34.82 0.57142857 0.428902724 0.7613162 
16 34.83 0.54285714 0.400546403 0.7357297 
17 35.00 0.51428571 0.372716736 0.7096268 
18 35.03 0.48571429 0.345406318 0.6830169 
19 35.07 0.45714286 0.318612700 0.6559048 
20 35.08 0.42857143 0.292338278 0.6282909 
21 35.10 0.40000000 0.266590415 0.6001716 
22 35.18 0.37142857 0.241381805 0.5715393 
23 35.20 0.34285714 0.216731133 0.5423818 
24 35.21 0.31428571 0.192664100 0.5126825 
25 35.41 0.28571429 0.169214967 0.4824198 
26 35.64 0.25714286 0.146428847 0.4515671 
27 35.80 0.22857143 0.124365165 0.4200927 
28 42.00 0.17142857 0.082749766 0.3551400 
29 42.40 0.14285714 0.063455758 0.3216125 
30 42.80 0.11428571 0.045441103 0.2874319 
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31 43.00 0.08571429 0.029049945 0.2529071 
32 44.00 0.05714286 0.014877206 0.2194838 
33 46.40 0.02857143 0.004139792 0.1971902 
34 48.00 0.00000000 0.000000000 0.0000000 

Plotting the K-M model produces a plot similar to the one above only with discontinuous steps 

corresponding to the observed failure time. 

plot(chnSPR_KM,main="spring") 
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3.8 Example 3: Working with Censored Data 

Censored data occur when not all study subjects have an observed failure time. All that is known 

about the censored observations is that the subject did not fail for at least a certain duration. If these 

observations are not handled correctly, then the survival function could be severely biased. In the 

following two examples, we illustrate approaches for handling right censoring, which is the most 

common data complication in failure time studies. 

Right-censoring occurs when the initiation time for study subjects is known, but the failure time of 

some subjects is not. This occurs because the study concludes before all possible failures have 

occurred (Type I censoring) or because individual subjects dropped out before the end of the study 

and their failure time could not be recorded (Type II censoring). Refer to the section above titled 

“Censored Observations” for a more detailed explanation of these mechanisms and how they are 

dealt with during model estimation. 

3.8.1 Type I censoring 

The following example concerns monitoring the mortality of fish that are exposed to gas 

supersaturation. Gas supersaturation occurs when water contains an overabundance of dissolved 

gas, a state that sometimes occurs at the outflow of dams and may be lethal to fish (Weitkamp and 

Katz 1980). This study is an example of Type I censoring because the study was terminated after 

30 days, at which point a portion of the study subjects were still alive. 

We load the data set in as before using data(). Printing the dataframe reveals that 9 of the 35 

observations (~26%) all have a value of 30 and TRUE under the column titled censored. 

> data(trout) 

 

#printing the dataframe 
> trout 

     (output continued) 
 days censored     …  
 8.66     FALSE           24.29      FALSE 
 10.3     FALSE           24.35      FALSE 
 12.63    FALSE           24.51      FALSE 
 14.73    FALSE           24.62      FALSE 
 15.67    FALSE           24.8       FALSE 
 16.01    FALSE           26.76      FALSE 
 16.26    FALSE           8.81       FALSE 
 16.32    FALSE           8.91       FALSE 
 17.46    FALSE             30       TRUE 
 18.78    FALSE             30       TRUE 
 19.62    FALSE             30       TRUE 
 19.92    FALSE             30       TRUE 
 20.13    FALSE             30       TRUE 
 21.34    FALSE             30       TRUE 
 22.93    FALSE             30       TRUE 
 23.59    FALSE             30       TRUE 
 23.64    FALSE             30       TRUE 
 24.26    FALSE                             
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We will save the failure times (observed mortalities in this case) in a vector object for convenience. 

# saving a vector of the failure times for convenience 

> mort_day=trout$days 

Next, we illustrate the consequences of failing to properly address censored observations. First, 

treating the censored observations as actual failure times ignores the fact that these subjects could 

have survived longer and artificially lowers the height of survival function. That is, it indicates a 

more intense mortality process than is appropriate. The second option of simply omitting the 

censored fish causes the survival function to drop even more abruptly. We illustrate these two 

incorrect approaches in the left and middle plots below. The plot on the right shows a survival 

function where the censoring is handled correctly; note that the estimated survival functions s(t) do 

not extend to 0 in the right plot. 

 

These plots were created using the following code, which showcases some new arguments for the 

functions fc_surv(), fc_plot(), and fc_fit() (used in previous examples). 

 

Code for the left plot: 

# survival function (treating censored observations as actual failure times) 

> unadj_S=fc_surv(time = mort_day) 

> fc_plot(time = mort_day, 

        surv = unadj_S, 

        hist=F, 

        main="Ignore") 

 

Code for the middle plot: 

# survival function (ignoring censoring) 

> mort_day_sub30=mort_day[mort_day<30] # subsetting 

> omit_S=fc_surv(time = mort_day_sub30) 

> fc_plot(time = mort_day_sub30, 

        surv = omit_S, 

        hist=F, 

        main="Omit") 
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Code for the right plot: 

 

 

# survival function (with right censoring) 

> cens_S=fc_surv(time = mort_day, 

               rc.value = 30) 

> fc_plot(time = mort_day, 

        surv = cens_S, 

        hist=F, 

        main="Properly Censored") 

Within fc_plot(), we use the argument hist=FALSE to prevent histograms of failure time from being 

created (as in example 2), and the argument main overrides the default main title for each plot. The 

object mort_day_sub30 represents a subset of the failure times that includes only those below the 

study’s conclusion at 30 days. The object cens_S is created using fc_surv() as above but with the 

argument rc.value=30, used to indicate that the observations ≥ 30 are right-censored and not actual 

failure times. 

 

Finally, we use the same rc.value=30 argument inside the fc_fit function to fit all available 

failCompare models, and then rank the list of models using fc_rank. Importantly, the sample 

survival function estimates are the K-S estimates based on the calculation in equation 5 (page 4) 

and the GOF metric is based on the distance between the K-M estimates and the parametric model 

survival functions, all of which account for the censoring. 

# Fitting models 

> trout_mods=fc_fit(mort_day,rc.value = 30,model="all") 

 

# Ranking models 

> trout_mods_R=fc_rank(trout_mods) 

Candidate models ranked by goodness of fit measure: 
 
        model    SSE_KM  n npars denom    GOF 
1 vitality.4p 0.4512892 35     2    32 0.0141 
2 vitality.ku 0.4524401 35     4    30 0.0151 
3     weibull 0.5548681 35     2    32 0.0173 
4    gompertz 0.5428142 35     3    31 0.0175 
5       gamma 0.6020101 35     2    32 0.0188 
6      llogis 0.6131972 35     2    32 0.0192 
7    gengamma 0.6073838 35     4    30 0.0202 
8   lognormal 0.6641553 35     2    32 0.0208 

From this, we can see that the Vitality 2013 model (vitality.4p) is top ranking model, followed 

closely by the Vitality 2009 model (vitality.ku). The plot below shows the fit of the top-performing 

models. Notice that the survival functions do not reach 0 within the study period, indicating that 

fitted models and K-M estimates are accounting for right-censoring. Censored times (at or beyond 

𝑡 = 30) are denoted with the grayed-out symbol at 𝑠(𝑡) = 0. 
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3.8.2 Type II censoring 

Our final censoring example describes the case in which study subjects drop out while the 

investigation is ongoing rather than only at the end of the study (e.g., Type II censoring). This 

example data set can be loaded into R by running data(pike). Despite the “fishy” name, this data set 

is actually named for the author of a study on cancer deaths in rats and is given as an example in 

Lee and Wang (2003). 

We begin by loading and viewing the data. 

> data(pike) 

> pike    (output continued) 
   days death     days death  
1   142     1  12  233     1 
2   156     1  13  239     1 
3   173     1  14  240     1 
4   198     1  15  261     1 
5   204     0  16  280     1 
6   205     1  17  280     1 
7   232     1  18  296     1 
8   232     1  19  296     1 
9   233     1  20  323     1 
10  233     1  21  344     0 
11  233     1   
 

There are 21 study subjects, the failure times are recorded in days, and the column titled “death” is 

an indicator variable with observed deaths denoted by 1 and censored observations by 0. Unlike in 

the previous example, the two censored observations do not both fall at the end of the study: one is 

at day 204 and another is at 344. In this case, we must account for the censoring using the censorID 
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argument in the function fc_fit. For convenience we first define two vectors as inputs associated 

with the two columns days and death. 

mort=pike$days  # represents observed mortality or censoring 

death=pike$death # zeroes indicate censoring 

 

The original study modeled the death of rats using a Weibull model with Type II censoring. Here, 

we will compare three of our parametric models: the 2-parameter Weibull, Gompertz, and the 

lognormal model. We do this using fc_fit this time listing the models we want to fit in a character 

string. 

> pike_mods=fc_fit(time=mort,censorID=death,model=c("lognormal", "weibull","gompertz")) 

 

After defining the model list, we rank the model fit using fc_rank. 

> pike_mods_ranked=fc_rank(pike_mods) 

 
Candidate models ranked by goodness of fit measure: 
 
      model    SSE_KM  n npars denom    GOF 
1 lognormal 0.1259917 21     2    18 0.0070 
2   weibull 0.2127602 21     2    18 0.0118 
3  gompertz 0.2734661 21     2    18 0.0152 
 

> plot(pike_mods_ranked) 

 

We see from this ranking that the lognormal model outperforms the alternatives. Also, notice that 

the two grayed out “+” signs correspond to the censored observations at 204 and 344 days. 

  



P a g e  | 33 

We will now select and summarize the lognormal model. 

> pike_lnrm_mod=fc_select(pike_mods_ranked,model = "lognormal") 

> summary(pike_lnrm_mod) 

Summary of lognormal failure model object  
 
Call: 
flexsurv::flexsurvreg(formula = survival::Surv(time = y, event = non_ce
n) ~  
    1, dist = model[i]) 
 
Estimates:  
         est     L95%    U95%    se     
meanlog  5.4727  5.3722  5.5732  0.0513 
sdlog    0.2309  0.1675  0.3181  0.0378 
 
N = 21,  Events: 19,  Censored: 2 
Total time at risk: 5033 
Log-likelihood = -104.2402, df = 2 
AIC = 212.4804 
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4 Appendix 

4.1 Parametric Model Descriptions 

The following sections summarize distinguishing characteristics and key functions (density, 

survival, and hazard) of the nine parametric failure time models contained within failCompare 

(version 1.0). Information on the R package used to fit the model internally and a mapping of 

parameter names to equations are also provided. 

4.1.1 Models Based on Probability Distributions 

Failure time models organized under this subheading are similar in that they are all based on 

positive continuous distributions describing the time until failure from which the survival function 

is derived using their cumulative distribution function (𝑆(𝑡) = 1 − 𝐹(𝑡)). Almost all models 

described here belong to the generalized F distribution family. This group of models is in contrast 

to the Vitality family of models, which have “evolving” density functions (Section 4.1.2).  
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4.1.1.1 Weibull model (2-parameter) 

Label in failCompare: "weibull" 

Model fitting package: flexsurv 

 

Parameter definitions: shape = 𝛽 ; scale = 𝜆 

Description: 

Log-linear hazard function describing accelerating (or decelerating) failures over time. Also 

provides the benefit of closed-form estimates for the three defining functions. Reduces to 

exponential distribution with scale parameter 𝜆 when 𝛽 = 0. 

Density function: 

𝑓(𝑡) =
𝛽

𝜆
(

𝑡

𝜆
)

𝛽−1

𝑒
−(

𝑡
𝜆

)
𝛽

 

Survival function: 

𝑆(𝑡) = 𝑒
−(

𝑡
𝜆

)
𝛽

 

Hazard function: 

ℎ(𝑡) =
𝛽

𝜆
(

𝑡

𝜆
)

𝛽−1
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4.1.1.2 Weibull model (3-parameter) 

Label in failCompare: weibull3 

Model fitting package: Specific to failCompare 

 

Parameter definitions: shape = 𝛽 ; scale = 𝜆 ; thrsh = 𝛾 

Description: 

Equivalent to 2-parameter Weibull, but with a threshold parameter (𝛾) which defines an initial 

“failure-free” interval and may shift the distribution in time. Reverts to 2-parameter Weibull when 

𝛾 = 0 and to an exponential when 𝛽 = 𝛾 = 0. 

Density function: 

𝑓(𝑡) =
𝛽

𝜆
(

𝑡 − 𝛾

𝜆
)

𝛽−1

𝑒
−(

𝑡−𝛾
𝜆

)
𝛽

 

Survival function: 

𝑆(𝑡) = 𝑒
−(

𝑡−𝛾
𝜆

)
𝛽

 

Hazard function: 

ℎ(𝑡) =
𝛽

𝜆
(

𝑡 − 𝛾

𝜆
)

𝛽−1

 

 

  



P a g e  | 37 

4.1.1.3 Gompertz model 

Label in failCompare: "gompertz" 

Model fitting package: flexsurv 

 

Parameter definitions: shape = 𝑎 ; rate = 𝑏 

Description: 

Log-linear hazard function that allows more rapid acceleration of failures, relative to the 2- and 3-

parameter Weibull. Reverts to exponential model when 𝑎 = 0. Note that 𝑎 = 𝑒𝛾 in equation (9). 

Density function 

𝑓(𝑡) = 𝑎𝑒𝑏𝑡 ⋅ 𝑒𝑥𝑝[(−𝑎/𝑏) ⋅ (𝑒𝑏𝑡 − 1)] 

Survival function 

𝑆(𝑡) = 𝑒𝑥𝑝[(−𝑎/𝑏)(𝑒𝑏𝑡 − 1)] 

Hazard Function 

ℎ(𝑡) = 𝑎𝑒𝑏𝑡 
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4.1.1.4 Log-normal model 

Label in failCompare: "lognormal" 

Model fitting package: flexsurv 

 

Parameter definitions: meanlog = 𝜇 ; sdlog = 𝜎 

Description: 

Hazard function that increases from the origin (0,0) and can reach a peak and decline at different 

rates. 

𝑓(𝑡) =
1

𝑡𝜎√2𝜋
𝑒

(−
1

2𝜎2⌈log(𝑡)−𝜇⌉2)
 

Survival function 

 

 

𝑆(𝑡) =
1

𝜎√2𝜋
∫

1

𝑡

∞

𝑡

𝑒
(−

1
2𝜎2⌈log(𝑡)−𝜇⌉2)

𝑑𝑡 = 1 − 𝛷[(𝑙𝑜𝑔(𝑡) − 𝜇)/𝜎] 

 

Hazard Function 

A simplified form of the hazard function is calculated by making the following substitution: 

𝑎 = 𝑒−𝜇, which yields: 

 

ℎ(𝑡) =

1

𝑡𝜎√2𝜋
𝑒

−
𝑙𝑜𝑔(𝑎𝑡)2

2𝜎2

1 − 𝛷(𝑙𝑜𝑔(𝑎𝑡/𝜎))
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4.1.1.5 Log-logistic model 

Label in failCompare: "llogis" 

Model fitting package: flexsurv 

 

Parameter definitions: shape = 𝑎 ; scale = 𝑏 

Description: 

Similar to the log-normal model, but with thicker tails in the density function. Benefit of having a 

closed-form for the three distribution functions. 

Density function 

𝑓(𝑡) =
(𝑎/𝑏)(𝑡/𝑏)𝑎−1

[1 + (𝑡/𝑏)𝑎  ]2
 

Survival function 

𝑆(𝑡) =
1

1 + (𝑡/𝑏)𝑎
 

Hazard function 

ℎ(𝑡) =
(𝑎/𝑏)(𝑡/𝑏)𝑎−1

1 + (𝑡/𝑏)𝑎
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4.1.1.6 Gamma model (2-parameter) 

Label in failCompare: "gamma" 

Model fitting package: flexsurv 

 

Parameter definitions: shape = 𝑎 ; scale = 𝑠 

Description: 

Hazard function may decrease or increase to approach a particular value (e.g., three of the four 

hazard functions depicted below approach the value 1/2). This 𝑎 and 𝑠 parameterization below is 

consitent with the dgamma() documentation in the base R stats package. An alternate 

parameterization replaces scale with rate = 1/𝑠 

Density function 

𝑓(𝑡) =
𝑡𝑎−1𝑒−𝑡/𝑠

Γ(𝑎)𝑠𝑎
 

Survival function 

𝑆(𝑡) = 1 − ∫
𝑡𝑎−1𝑒−𝑡/𝑠

Γ(𝑎)𝑠𝑎

𝑡

0

𝑑𝑡 

Hazard function 

No closed-form version exists. 
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4.1.1.7 Generalized gamma model (3-parameter) 

Label in failCompare: "gengamma" 

Model fitting package: flexsurv 

 

Parameter definitions: mu = 𝜇 ; sigma = 𝜎 ; Q = 𝑄 

Description: 

The additional parameter allows for greater kurtosis and can produce hazard functions that initially 

increase and then decrease and vice versa. This distribution can also take on a “bathtub-shaped” 

hazard function that is useful for characterizing populations with high risk of mortality early and 

late in life. failCompare implements the flexsurv version of the generalized gamma described by 

Prentice (1974) which estimates parameters using a log-gamma distribution with parameters: 𝜇, 𝜎, 

𝑄. Below we describe the distributions using the more recognizable parameterization with 

parameters 𝑎 and 𝑠 as in the 2-parameter gamma model above but with the additional parameter 𝑏. 

Conversion from the dgamma() to Prentice (1974) 

𝜇 = 𝑙𝑜𝑔(𝑠) +
𝑙𝑜𝑔(𝑎)

𝑏
 

𝜎 =
1

(𝑏√𝑎)
 

𝑄 =
1

√𝑎
 

Conversion from Prentice (1974) to dgamma() 

𝑎 = (
1

𝑄
)

2

, 𝑏 =
𝑄

𝜎
  , 𝑠 = 𝑒𝑥𝑝(𝜇 −

𝑙𝑜𝑔(𝑎)

𝑏
) 

Density function 

𝑓(𝑡) =
𝑏𝑡𝑏𝑎−1𝑒−(𝑡/𝑠)𝑏

Γ(𝑎)𝑠𝑎𝑏
 

Survival function 

𝑆(𝑡) = 1 − ∫
𝑏𝑡𝑏𝑎−1𝑒−(𝑡/𝑠)𝑏

Γ(𝑎)𝑠𝑎𝑏

𝑡

0

𝑑𝑡 

Hazard function 

No closed-form version exists. 

Plots below are made with identical parameter values as the 2-parameter gamma distribution 

example above, which is a special cased of the generalized gamma with 𝑏 = 1, but with the 𝑏 

parameter value increased (top row) and decreased (bottom row) by 0.2 to show this parameter’s 

effect on the shape of the functions. 
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4.1.2 Vitality Models 

The two vitality models in failCompare require greater elaboration compared to other models 

because they combine two survival processes (intrinsic and extrinsic). The Vitality models have 

“evolving” density functions produced by a stochastic model of vitality that declines over a lifetime 

along with extrinsic forces that can cause accidental mortality. Both models have four parameters, 

two in common with one another. The common parameter 𝑟 describes the average rate of vitality 

loss; 𝑠 describes the variability in the rate of loss among individuals. The Vitality 2009 model (Li 

and Anderson 2009) assumes an initial distribution of vitalities when 𝑡 = 0, defined by parameter 

𝑢, and an exponential model of extrinsic mortality acting on the entire population, defined by 𝑘. 

The Vitality 2013 model (Li and Anderson 2013) assumes an extrinsic failure process consisting 

of challenge events that occur throughout the lifetime of the population and which preferentially 

eliminate low vitality individuals. The frequency of challenges is defined by 𝜆 and the magnitude 

of these events by 𝛽. 

4.1.2.1 Vitality 2009 

Label in failCompare: "vitality.ku" 

Model fitting package: vitality 

 

Parameter definitions:  

r = 𝑟 ; s = 𝑠 ;  k = 𝑘 ; u = 𝑢 

 

intrinsic 

𝑟 = rate of vitality loss, 𝑠 = vitality spread over time, 𝑢 = CV of initial vitality at 𝑡 = 0 

extrinsic 

𝑘 = accidental failure rate   

Description 

Distinguishing features of the Vitality 2009 model are that three parameters (𝑟, 𝑠, and 𝑢) define the 

intrinsic failure process, whereas only a single parameter (𝑘) defines an independent extrinsic 

(accidental) morality rate. Below we denote the intrinsic and extrinsic survival components with 

subscripts 𝐼 and 𝐸, respecively. The time to first passage of the zero boundary follows an inverse-

Gaussian distribution, and the intrinsic survival function for the model is obtained by integrating 

the time to first passage over the values of a normal distribution of initial vitality surrounding 1.0: 

Survival function (intrinsic) 

𝑆𝐼(𝑡) = 1 − ∫ 𝑓𝐼

∞

−∞

(𝑡|𝑣0)𝑝(𝑣0) 𝑑𝑣0 

where 𝑝(𝑣0) is the initial vitality distribution with a mean of 1.0 and coefficient of variation 𝑢. This 

function is simplified as: 
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𝑆𝐼(𝑡) = [𝛷 (
1 − 𝑟𝑡

√𝑢2 + 𝑠2𝑡
) − 𝑒𝑥𝑝 (

2𝑢2𝑟2

𝑠4
+

2𝑟

𝑠2 ) 𝛷 (−
1 + 𝑟𝑡 +

2𝑢2𝑟
𝑠2

√𝑢2 + 𝑠2𝑡
)] 

where 𝑟 is rate of vitality loss, 𝑠 is the spread of the vitality loss, and 𝑢 defines the coefficient of 

variation (CV) of the initial vitality distribution. 

This underlying stochastic process produces a density function that evolves over time, beginning 

with a half-normal distribution with a vitality value near 1 then shifting to a normal distribution as 

vitality deceases. Over time, the distribution becomes more asymmetric resembling a gamma-like 

distribution with the probability density mass increasingly accumulating near the zero boundary. 

The intrinsic survival function of the Vitality 2009 model can be approximated integrating the 

initial vitality distribution and the stochastic Wiener process. 

Evolving density function 

𝑓𝐼(𝑣|𝑡) =
𝑒𝑥𝑝 (−

(𝑣 − 1 + 𝑟𝑡)2

2(𝑢2 + 𝑠2𝑡)
) [1 − 𝑒𝑥𝑝 (−

2𝑣(𝑟𝑢2 + 𝑠2)
𝑠2(𝑢2 + 𝑠2𝑡)

)]

√2𝜋(𝑢2 + 𝑠2𝑡)
 

where 𝑣 is the relative density of the vitality curve at time 𝑡.  

The extrinsic component of the model is much simpler, and is defined as an exponential survival 

distribution with parameter 𝑘 (where 𝑘 =
1

𝜆
 in equation 6): 

Survival function (extrinsic) 

𝑆𝐸(𝑡) = 𝑒−𝑘𝑡 

Survival function (combined) 

The combined survival function is the joint probability of having a vitality value greater than zero 

and not suffering extrinsic (accidental) mortality: 

𝑆(𝑡) = 𝑆𝑖(𝑡) ⋅ 𝑆𝐸(𝑡) 

Hazard function 

The hazard rates for the two processes are additive, and the exponential hazard rate is simply 𝑘, 

owing to the “memoryless” property of the extrinsic distribution. 

ℎ(𝑡) =
𝑓𝐼(𝑡)

𝑆(𝑡)
+ 𝑘 
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4.1.2.2 Vitality 2013 

Label in failCompare: "vitality.ku"   

Model fitting package: vitality 

 

Parameter definitions:   

r = 𝑟 ; s = 𝑠 ;  lambda = 𝜆 ; beta = 𝛽 

 

intrinsic    

𝑟 = rate of vitality loss, 𝑠 = vitality spread over time 

extrinsic 

𝜆 = frequency of random survival challenges, 𝛽 = magnitude of challenges 

Description 

Parameters 𝑟 and 𝑠 correspond to the definitions given above for the Vitality 2009 model. A 

distinguishing characteristic of the 2013 model is that there are 2 parameters that characterize 

extrinsic mortality: the frequency of random survival challenges (𝜆) and the magnitude of 

challenges. Whether an individual dies given a challenge depends on its vitality value relative to 

the challenge magnitude. This has the effect of preferentially eliminating individuals that happen 

to have lower vitality at a given time. The challenge frequency is Poisson distributed with parameter 

𝜆, and the distribution of challenge magnitudes is exponentially distributed with scale parameter 𝛽 

(corresponding to 𝜆 in equation 6). Like the Vitality 2009 version, this model is extremely flexible 

and can capture a minority of earlier failures prior to the main decline. This model is uniquely able 

to fit failure time models seemingly without a right tail on the survival function. 

Hazard function (Intrinsic) 

ℎ𝐼(𝑡) =
𝑡−3/2𝑒(1−𝑟𝑡)2/2𝑠2𝑡

𝑠√2𝜋 (𝛷 [
1 − 𝑟𝑡

𝑠√𝑡
] − 𝑒2𝑟/𝑠2

 ⋅ 𝛷 [−
1 + 𝑟𝑡

𝑠√𝑡
])

 

Hazard function (Extrinsic) 

ℎ𝐸(𝑡) = 𝜆 𝑒−(1−𝑟𝑡)/𝛽 

Hazard function (Combined) 

ℎ(𝑡) = ℎ𝐼(𝑡) + ℎ𝐸(𝑡) 

Survival function (Combined) 

𝑆(𝑡) = [𝛷 (
1 − 𝑟𝑡

𝑠√𝑡
) − 𝑒𝑥𝑝 (

2𝑟

𝑠2
) 𝛷 (−

1 + 𝑟𝑡

𝑠√𝑡
)] 𝑒𝑥𝑝 [

𝜆𝛽

𝑟
𝑒

−
1
𝛽 (𝑒

𝑟𝑡
𝛽 − 1)] 
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