

COLUMBIA BASIN RESEARCH

24 November 2021

failCompare R package

Failure Time Model Fitting and Comparisons

Steven L. Whitlock, Rebecca A. Buchanan, and Rich Townsend

Columbia Basin Research

School of Aquatic and Fishery Sciences

University of Washington 1325 4th Avenue, Suite 1515

Seattle, WA 98101-2509

Version: 1.0

Release date: November 30, 2021

Software license: Version 3 GNU General Public License

P a g e | i

Table of Contents

TABLE OF CONTENTS ... I

1 INTRODUCTION .. 1

2 FAILURE TIME MODELS ... 2

2.1 THEORETICAL BASIS .. 2

2.2 FAILURE TIME MODELING IN PRACTICE .. 3

2.2.1 Calculating the Sample Survival Function ... 3

2.2.2 Parametric Models of Failure Time ... 4

2.3 COMPARING MODELS .. 6

2.4 LACK-OF-FIT TESTING ... 7

2.5 CENSORED DATA ... 8

3 USING FAILCOMPARE .. 9

3.1 OVERVIEW OF FUNCTIONS ... 9

3.2 RELATION TO OTHER SOFTWARE ... 10

3.3 EXAMPLE DATA SETS .. 10

3.4 HANDLING CENSORING.. 10

3.4.1 Downloading the failCompare package ... 11

3.5 GETTING STARTED .. 11

3.5.1 Installation within R ... 11

3.5.2 Loading the failCompare package .. 12

3.5.3 Example data .. 12

3.6 EXAMPLE 1: FITTING, VISUALIZING, AND RANKING ALTERNATIVE FAILURE TIME MODELS 12

3.6.1 Preparation ... 12

3.6.2 Fitting individual models .. 13

3.6.3 Model comparisons ... 17

3.6.4 Simultaneous model fitting ... 18

3.7 EXAMPLE 2: TESTING METHODS FOR FAILURE TIME MODELS .. 21

3.7.1 Log-rank test for comparing groups ... 22

3.7.2 Ranking models separately for two groups ... 23

3.7.3 Kolmogorov-Smirnov test (simulation-based) .. 24

3.7.4 Selecting the Kaplan-Meier model from a model list object ... 26

3.8 EXAMPLE 3: WORKING WITH CENSORED DATA ... 28

3.8.1 Type I censoring ... 28

3.8.2 Type II censoring .. 31

4 APPENDIX... 34

4.1 PARAMETRIC MODEL DESCRIPTIONS ... 34

4.1.1 Models Based on Probability Distributions .. 34

4.1.2 Vitality Models .. 43

5 REFERENCES .. 48

P a g e | 1

1 Introduction

Many scientific investigations are concerned with measuring or modeling the length of time before

an event occurs. Such data may be referred to as “time to event data,” “failure time data,” or

“survival data,” depending on the field. Efforts to analyze these types of data have spawned an

array of statistical analysis methods owing to the variety of data-generating processes and special

study design limitations across fields. For example, the practice of reliability modeling concerns

measuring the time until system or equipment failure (Blischke and Murthy 2011) and may be used

to determine when maintenance or replacement is advisable. The related field of survival analysis

concerns measurement of time until death while also accounting for study subjects that survive past

the end of the study (Hosmer et al. 2008). In fish and wildlife studies, it is sometimes necessary to

model time to battery failure for biotelemetry transmitters (“tags”). Analysis tools developed for

one application are often transferable to other fields. For example, the Weibull model, originally

developed for reliability assessment (Leemis 1995), was later found useful for estimating the time

interval between wildfires (McCarthy et al. 2001). However, the overwhelming number of

alternative methods and models can make it difficult to decide on the most appropriate analysis

tool, particularly for those working in fields without established analysis conventions.

A typical analysis need in these fields is to model the time to event (e.g., failure) or model the

probable status of an individual at a particular time (e.g., probability of survival to a specific time).

A diversity of statistical failure time models have been developed for this purpose, including but

not limited to the Weibull, Gompertz, log-normal, log-logistic, gamma, and vitality models (Li and

Anderson 2009, 2013). Selecting among the possible models can be challenging because it requires

both fitting multiple models and ranking their relative fit. Models that arise from unrelated

statistical families can cause additional difficulties in ranking. Skalski and Whitlock (2020)

developed a novel performance metric for ranking alternative models that is valid even when

comparing models from different statistical families and also presented a general lack-of-fit test

applicable to different failure time models. Although these methods were presented in Skalski and

Whitlock (2020), until now implementing them has required the user to draw on multiple software

packages and to write their own code.

The failCompare R package was developed to easily implement the model fitting, ranking, and

lack-of-fit tests for nine different failure time models as presented in Skalski and Whitlock (2020).

We selected the open-source programming language and coding environment R (R Core Team

2020) as the platform for this tool because it is the most common programing environment used in

fisheries and the broader ecological research community (Lai et al. 2019; Figure 1). It is also

multiplatform and can be easily run using the Windows, Mac, or Linux operating systems. We have

designed the package to require a minimal level of programming skill for users to operate. The

output from the failCompare package may be used independently or as input to the cbrATLAS R

package (in development), which provides estimation of survival from active tag studies in fish and

wildlife investigations. The failCompare package focuses on investigations that measure failure

time by monitoring study subjects over a defined period and recording the duration until failure and

is not intended for analysis of life tables.

P a g e | 2

Figure 1. The four most commonly cited statistical analysis programs in Ecological Society of

America Journals from 1990–2013 (Touchon and McCoy 2016).

2 Failure Time Models

Prior to explaining the workings of the failCompare package we lay a theoretical foundation for

failure-time models in general. Although not exhaustive, this description of principles and

techniques provides an appropriate background for understanding the tools in the package. This

section also establishes consistent terminology and notation. With some minor exceptions, we use

the language of “failure” instead of “survival” because it applies to a broader set of data types (e.g.,

death is frequently defined as a type of failure).

2.1 Theoretical Basis

We consider time to failure to be a nonnegative random variable 𝑇 with an underlying probability

distribution. This distribution can be transformed into a monotonically decreasing function from 1

to 0 defined over time (𝑡) as 𝑃(𝑇 < 𝑡). In particular if the probability distribution of failure time

has a continuous distribution 𝑓(𝑡), then the probability of failing prior to time 𝑡 is calculated as the

value of the cumulative distribution function, 𝐹(𝑡):

𝐹(𝑡) = ∫ 𝑓(𝑡) 𝑑𝑡.

𝑡

0

(1)

The probability of not having failed by time 𝑡 is then:

𝑆(𝑡) = 1 − 𝐹(𝑡),
(2)

known as the survival function. Another useful means of characterizing the failure process is the

hazard function, defined as:

P a g e | 3

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
.

(3)

The hazard function describes how prone a subject is to fail at time 𝑡, conditional on not having

failed up until that point. The shape of this function can be especially helpful for interpreting how

the relative risk of failure changes over time. The probability distribution, survival, and hazard

functions are mathematically equivalent, so knowledge of any one can be used to derive the others.

2.2 Failure Time Modeling in Practice

2.2.1 Calculating the Sample Survival Function

The initial step in analyzing failure time data is to transform observed data into a discrete sample

survival function 𝑆̂(𝑡). If failure of all subjects occurs within the observation period and the failure

time is known precisely, then 𝑆̂(𝑡) is defined as a discontinuous function that steps downward at

each unique failure time increment:

𝑆̂(𝑡) =
Count of observations > t

𝑛
,

(4)

where 𝑛 is the total number of observations and 𝑆̂(𝑡) has a constant value between observed failure

times. When a portion of the study subjects are removed prematurely, or the investigation concludes

prior to the failure of all subjects, then this estimator is unsuitable. This is because although some

of the study subjects do not have a known failure time, these incomplete records still provide

information about the minimum time the subjects persisted without failure. This type of data

complication is known as censoring, specifically “right censoring.” Another possibility is “interval

censoring,” which occurs when some study subjects are missing observed failure times but were

nevertheless known to have failed between monitoring points. For more information on censoring,

see the “censored data” section below.

When either of these forms of censoring are present the product-limit estimate of sample survival

probability should be used:

𝑆̂(𝑡) = ∏ (
𝑛 − 𝑖

𝑛 − 𝑖 + 1
)

𝑡(𝑖)<𝑡

(5)

where 𝑛 = sample size,

𝑖 = number of failures before time t.

This is known as the Kaplan-Meier survival estimate (“K-M estimate” hereafter) and is distinctive

in that it is based on a maximum likelihood approach but does not actually assume a particular

probability distribution (i.e., nonparametric; Kaplan and Meier 1958). The estimator can

accommodate censored observations because estimates are based on a chain of conditional

probabilities rather than the fraction of the total subjects yet to have failed. These Kaplan-Meier

P a g e | 4

estimates serve a descriptive purpose and may be used to compare multiple groups in a study. They

also form a basis for examining the fit of parametric models (Kalbfleisch and Prentice 2011).

2.2.2 Parametric Models of Failure Time

There are many reasons why one would want to characterize a failure-time process using a

parametric distribution. If the model fits the data well, then the parameter estimates can provide a

succinct description of how likely failure is to occur or how the failure rate may change over time

and/or across multiple groups. Arguably, a smooth function better resembles the underlying failure-

time process for a population, as opposed to the K-M survival function where the position of

downward steps is necessarily defined by particular observations.

In this section, we survey the failure time models discussed in Skalski and Whitlock (2020). All of

the following models assume that 𝑡 ≥ 0. The simplest choice of failure time model is based on the

exponential distribution with parameter 𝜆 and density function:

𝑓(𝑡) =
1

𝜆
𝑒

−(
𝑡
𝜆

)
, 𝜆 > 0

(6)

and therefore the survival function is

𝑆(𝑡) = 𝑒
−

𝑡
𝜆. (7)

Interestingly, terms in the hazard rate cancel resulting in a constant hazard function defined by 1 𝜆⁄

(Figure 2). Two noticeable features of this model are that failures occur immediately and the

instantaneous risk of failure at any moment is unaffected by the passage of time (“memoryless”).

The exponential model is therefore inappropriate for data sets in which failures are accumulated at

a variable rate or with a noticeable delay after 𝑡 = 0.

Figure 2. Exponential failure time model density (left), survival (middle), and hazard (right)

functions with three different values of parameter 𝜆.

P a g e | 5

A more flexible model is the Weibull model, of which the exponential model is a special case. The

survival function of the 2-parameter Weibull model with shape parameter 𝜆 and scale parameter 𝛽

is:

𝑆(𝑡) = 𝑒
−(

𝑡
𝜆

)
𝛽

, 𝜆, 𝛽 > 0.
(8)

The probability density of the Weibull model can reach an apex, meaning that rate of failures will

accelerate or decelerate over time (Figure 3). The exponential model arises in cases where 𝛽 = 1.

Figure 3. Weibull failure time model density (left), survival (middle), and hazard (right) functions

with three different values for shape (𝛽) and scale parameters (𝜆).

There are several other models based on familiar probability distributions, which are intuitive

extensions of simpler models or special cases of more general distributions. We briefly introduce

these alternative models here and provide more complete definitions in the appendix (Table 1). The

Gompertz model and 3-parameter Weibull model are extensions of the two distributions discussed

above. The Gompertz model extends the exponential model by defining the hazard rate as a log-

linear function of parameters 𝛾 and 𝑏:

ℎ(𝑡) = 𝑒𝛾+𝑏𝑡. (9)

The 2-parameter Weibull model can be further extended to a 3-parameter version:

𝑆(𝑡) = 𝑒
−(

𝑡−𝛾
𝜆

)
𝛽

,
 𝛾 > 0

(10)

with a threshold (or “guarantee”) parameter γ defining an initial “failure free” portion of the curve.

Also included in the failCompare package are the log-normal, log-logistic, and 2-parameter and 3-

parameter (“generalized”) gamma models. Log-normal and log-logistic models are well suited to

failure processes that have an initially increasing and then decreasing hazard function, with the log-

logistic model having a convenient closed-form definition for its survival function. The hazard

function of the 2-parameter gamma model approaches an asymptote as 𝑡 → ∞. The 3-parameter

gamma distribution is the most flexible model described so far and incorporates the exponential,

P a g e | 6

Weibull, and 2-parameter gamma as special cases (Kalbfleisch and Prentice 2011). All the above-

mentioned models except the Gompertz and 3-parameter Weibull represent special cases of the

generalized F distribution (not implemented in failCompare). See Kalbfleisch and Prentice (2011)

for a full description.

Among the nine models compared in Skalski and Whitlock (2020) and implemented in

failCompare, the vitality models are distinct because they do not represent an adoption of a familiar

probability distribution for descriptive purposes (Anderson 1992). Rather, the vitality survival

functions were derived by explicitly considering the two processes that contribute to the death of

organisms: (1) stochastic decline in vitality over a lifetime (intrinsic) and (2) chance external events

that cause early deaths (extrinsic). Under these models, death occurs at the time when an

individual’s vitality, engaging in a random walk downward, crosses the zero line. The two versions

of the vitality model included in the failCompare package are the Vitality 2009 model (Li and

Anderson 2009) and the Vitality 2013 model (Li and Anderson 2013). See the appendix subsection

on vitality models for more information.

Table 1. The failCompare package’s default failure time models and their basic characteristics.

Detailed descriptions of these models are available in the appendix.

Model Family # Parameters

2-parameter

Weibull
Generalized F 2

3-parameter

Weibull
Other 3

Gompertz Other 2

Log-normal Generalized F 2

Log-logistic Generalized F 2

Gamma Generalized F 2

Generalized

Gamma
Generalized F 3

Vitality 2009 Vitality 4

Vitality 2009 Vitality 4

2.3 Comparing Models

Alternative models represent various tradeoffs in terms of flexibility, ease of fitting, and

interpretation. Models with a greater number of parameters are more flexible but may overfit the

data and are prone to estimation problems with small data sets (e.g., failed convergence and

inability to compute the standard errors of parameters).

When faced with this type of model comparison problem, a commonly used criterion for model

selection is the Akaike Information Criterion (AIC; Burnham and Anderson 2007). However, some

types of models cannot be compared with this criterion because of differences in how the

likelihoods are formulated (Burnham and Anderson 2007, p. 307). Moreover there are differing

opinions on how censored observations should be counted when calculating the second order AIC

criterion, which includes sample size 𝑛 (AICc; Liang and Zou 2008). Considering these potential

P a g e | 7

complications and initial testing that confirmed the incompatibility of likelihood formulations

between vitality and other models, AIC did not appear to be a suitable criterion comparing the

variety of models supported by the package.

Instead, we created a more intuitive performance measure based on the squared difference between

empirical K-M estimates of the survival function and parametric model predictions, adjusted by a

penalty for complexity that incorporates the sample size and number of parameters in a manner

similar to AICc. This goodness-of-fit (GOF) statistic is the average squared deviation between the

Kaplan-Meier function and the fitted model values of 𝑆(𝑡) across the n observed failure times

(Figure 4):

𝐺𝑂𝐹 =
∑ (𝑆̂(𝑡𝑖) − 𝑆(𝑡𝑖))

2𝑛
𝑖=1

(𝑛 − 𝑝 − 1)
 (13)

where 𝑆̂(𝑡𝑖) = survival value from parametric model at time t for the ith failure (𝑖 = 1, … , 𝑛),

𝑆(𝑡𝑖) = K-M survival function estimate at time t for the ith failure (𝑖 = 1, … , 𝑛),

𝑛 = sample size (including censored observations)

𝑝 = number of fitted model parameters.

The model with the smallest GOF value within a set of candidates is considered most suitable.

Figure 4. Fitted parametric survival function and observed deviations in survival values at the time

of a failure event. The deviation in survival values is calculated at each time step in the K-M curve.

Reproduced from Skalski and Whitlock (2020).

2.4 Lack-of-Fit Testing

The GOF metric provides a measure of relative goodness-of-fit to compare alternative models but

does not indicate the suitability of the model in general. A clear choice for testing the suitability of

the estimated survival function is to apply the one-sample Kolmogorov Smirnov test (Sokal and

P a g e | 8

Rohlf 1995). This test is a common nonparametric method for comparing empirical versus

theoretical cumulative distribution functions. For the failure time model evaluation, the test statistic

is the absolute value of the largest discrepancy between 𝑆̂(𝑡𝑖) and 𝑆(𝑡𝑖) anywhere along the fitted

curve, i.e.,

𝐷 = MAX
𝑖=1,…,𝑛

|𝑆̂(𝑡𝑖) − 𝑆(𝑡𝑖)| . (12)

However, the critical region of the test is not valid for cases in which the model parameters are

estimated from data, as in the application here, rather than specified a priori. Instead we used the

simulation-based testing procedure described in Lilliefors (1967). This process involves first

computing the observed test statistic (𝐷𝑜𝑏𝑠) using equation (12) and then repeatedly simulating

datasets of length 𝑛 from the estimated distribution and calculating and storing simulated

values (𝐷𝑠𝑖𝑚) to approximate the sampling distribution of the test statistic. After accumulating

sufficiently large sample of 𝐷 values (e.g., 50,000), the P-value is computed as the proportion of

simulated samples that exceed 𝐷𝑜𝑏𝑠.

2.5 Censored Data

In its current form, the package is equipped to handle two common forms of right-censored data.

Interval-censored data and left-censored data are not supported. The two types of censoring

accommodated by the software are: Type I, single right censoring, where all subjects beyond a

specific time-point are considered removed, and Type II, progressive right censoring where some

study subjects are censored prior to termination of the study (Lee and Wang 2003). See example 3

for a demonstration on how to specify censored data types.

Figure 5. Illustration of a small failure time data without censored observations (left), and alternate

versions with Type I (middle) and Type II censoring (right). Horizontal line segments represent the

hypothetical lifespans of 15 study subjects ordered by their longevity; dotted sections represent

periods when an individual’s status was unobserved. Closed points at the end of lines represent

observed failure times, and open points represent the time where the observation was censored.

P a g e | 9

Fitting a parametric model to data with right censoring requires modification of the likelihood

function, which is maximized in obtaining parameter estimates. The likelihood value (𝐿) for a

model with observed failure times for all 𝑛 study subjects relies on the density function of the

model’s distribution, and is simply:

𝐿 = ∏ 𝑓(𝑡𝑖)

𝑛

𝑖=1

.

Because right-censored observations imply only that the study subject lasted a minimum duration

without failure, these observations need to be handled separately in the likelihood by evoking the

survival function based on the same underlying parameters. For the Type I case, the likelihood

combining the two types of information (pre-censoring and post-censoring) is:

𝐿 ∝ [∏ 𝑓(𝑡𝑖)

𝑟

𝑖=1

] ∙ 𝑆(𝑡𝑒𝑛𝑑)𝑛−𝑟 ,

where 𝑟 is number of study subjects with observed failure times and 𝑡𝑒𝑛𝑑 is the time at which the

study was terminated. A more general version of the likelihood which encompasses the Type II

(progressive) censoring case is

𝐿 ∝ ∏ 𝑓(𝑡𝑖)

𝑟

𝑖=1

∏ 𝑆(𝑡𝑖
+)

𝑛−𝑟

𝑖=1

where 𝑡𝑖
+ denotes potentially differing times where each of the 𝑛 − 𝑟 observations was censored.

It should be noted that this approach assumes an independent censoring mechanism.

3 Using failCompare

The focus of this package is statistical modeling of failure time data resulting from monitoring

study subjects over a defined period. In this section, we introduce the package’s functions, provide

instructions on package installation, and work through several examples.

3.1 Overview of Functions

The failCompare package includes functions for several stages of analysis of failure time data:

fitting the failure time models, ranking the models, and assessing lack-of-fit. There are several

functions that can be used to estimate the sample survival function and for preliminary plotting

(fc_surv() and fc_plot()). Individual models or sets of models are created using the fc_fit() function,

which has two required arguments: (1) the data set and (2) a text string of one or more model names.

This function fits the specified model(s) and stores the information in an object. Additional

information on these models can be obtained by calling the failure model object inside the generic

summary() function and the model fit can be visualized using plot(). The second stage of analysis

P a g e | 10

ranks models using the GOF statistic via the function fc_rank(). Convenience functions are provided

to assist the users by combining singular models (fc_combine()) into model lists for ranking or by

selecting a single model (fc_select()) from a list. Finally, the fc_test() function performs the lack-of-

fit test described above for any of the default models.

3.2 Relation to Other Software

The failCompare package depends on code from several other R packages: survival (Therneau and

Grambsch 2000), flexsurv (Jackson 2016), and the vitality package. The vitality package was

developed in connection with members of Columbia Basin Research (Passolt et al. 2018).

Documentation and source code for these packages are available at:

 https://cran.r-project.org/web/packages/survival/index.html

 https://cran.r-project.org/web/packages/flexsurv/index.html

 https://cran.r-project.org/web/packages/vitality/index.html

In the past Columbia Basin Research has provided a tool for adjusting survival models using tag

life in the desktop application ATLAS (http://www.cbr.washington.edu/analysis/apps/atlas). The

package failCompare provides the same tag-life fitting functions as ATLAS in addition to offering

a greater selection of failure-time models and additional model ranking and testing capabilities.

The failCompare package stands alone but is also designed to interface with the forthcoming

cbrATLAS R package, which will be a script-based version of the desktop application.

3.3 Example Data Sets

Most examples we provide here concern modeling the time until electronic tag failure. Accurately

modeling the tag-failure process is a critical step in many fish and wildlife studies based on

telemetry tags (i.e., transmitters). In these studies, acoustic tags are activated and implanted in fish

so their movement and survival can be monitored as they move past receiver stations. Tags

implanted in living study subjects eventually fail because of battery discharge, and sometimes

prematurely due to manufacturing defects. Investigators need an estimate of the longevity of these

tags to account for the tag-failure process in survival models. For this reason, a representative

sample of the batch of tags used in the study is held out and used to measure the tag failure rate as

a function of time in what is known as a tag life study (Townsend et al. 2006). The tags in the tag

life study are configured the same as those implanted in fish, placed in water with a similar thermal

environment, and monitored continuously by one or more nearby receivers.

3.4 Handling Censoring

In its current form (version 1.0), the failCompare package is equipped to handle two common forms

of right-censored data: Type I and Type II, see the “Censored Data” section above for technical

details. Type I censoring is conveniently handled by specifying the value after which all

observations will be considered censored (rc.value, i.e., identifying the minimum failure time of the

https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/flexsurv/index.html
https://cran.r-project.org/web/packages/vitality/index.html
http://www.cbr.washington.edu/analysis/apps/atlas

P a g e | 11

observations). Type II censoring requires specifying a censorID argument the same length as the

time argument the censor ID argument indicates whether individual times describe the subject

failure time or the subject censoring time. See Example 3 below for a demonstration on how to

account for these two forms of censoring using failCompare’s model-fitting and plotting functions.

3.4.1 Downloading the failCompare package

To download the package, navigate to the Columbia Basin Research website and click on the

hyperlink for the latest version at: http://www.cbr.washington.edu/analysis/apps/failCompare (as

seen below). There is no need to unzip the compressed folder after downloading it to your hard

drive.

3.5 Getting Started

We assume that the user has previously installed program R and is familiar with basic operations

(e.g., importing data, basic plotting). Program R can be downloaded freely at: https://cran.r-

project.org. There are many freely accessible instructional books and online resources that explain

the use of R. The user might also want to consider installing RStudio (https://www.rstudio.com), a

free program that serves as wrapper for the basic R graphical user interface with a built-in text

editor.

3.5.1 Installation within R

To install from within the base R graphical interface, select the option “install package(s) from

local files…” from the “Packages” dropdown menu and then navigate to the compressed folder that

was downloaded. Alternatively, to install failCompare from within RStudio, select the “Packages”

tab and click the “Install” button. From there, choose the “Package Archive File (.zip;tar.gz)” and

then navigate to the compressed folder that was downloaded, select it, and click ”install”

http://www.cbr.washington.edu/analysis/apps/failCompare
https://cran.r-project.org/
https://cran.r-project.org/
https://www.rstudio.com/

P a g e | 12

3.5.2 Loading the failCompare package

Once the package is installed, it must be loaded into the working environment before it can be used.

The installation needs to be performed only once, but the package must be loaded during each R

session using the library() command:

> library(failCompare)

3.5.3 Example data

Four example data sets are provided with the failCompare package and are used here. Two of the

example data sets contain failure time data of microacoustic transmitters (“tags”) used in studies of

migration survival of juvenile salmon. The third and fourth example data sets contain survival times

of fish in a toxicology study and rats in a cancer study. The data sets are named “sockeye,”

“chinook,” “trout,” and “pike.”

3.6 Example 1: Fitting, Visualizing, and Ranking Alternative Failure Time

Models

Our first example uses the “sockeye” data set that comes with the package.

3.6.1 Preparation

3.6.1.1 Loading data

Below we use the data() command to load the example data set “sockeye.” The data set contains

only one variable, days, which identifies the failure times of acoustic tags in a tag life study. The $

is used to extract the values in a labeled column. We will store this variable in the vector object

taglife.

> data(sockeye)

> taglife=sockeye$days # vector of tag failure times

Individual observations are displayed in the table below.

6.12 14.29 15.04 15.50 15.75 16.08 16.25 16.37 16.71 17.71

10.42 14.46 15.12 15.50 15.79 16.08 16.25 16.54 16.79 17.71

12.33 14.67 15.21 15.62 15.87 16.17 16.29 16.71 16.83 17.96

13.62 14.79 15.33 15.67 16.04 16.17 16.29 16.71 17.42 18.04

13.62 14.96 15.42 15.75 16.08 16.17 16.37 16.71 17.58 18.50

3.6.1.2 Initial data visualization

We begin this example by computing the sample survival fraction and visualizing the data using

basic R plotting tools. We will start by computing the sample survival function using the function

P a g e | 13

fc_surv(). Because there are no censored observations in the data set we can compute the sample

survival function 𝑆̂(𝑡) using equation 4. The function fc_surv() displays both a histogram of the

failure times and the sample survival function over time (t).

> S=fc_surv(taglife)

> fc_plot(time=taglife,surv=S)

There is one failure relatively early (~6 days) in the study and a peak between 15–20 days. The

gradual decrease in survival preceding a cascade of failures indicates that a model with a variable

hazard rate function is suitable. We start by fitting a 2-parameter Weibull model.

3.6.2 Fitting individual models

3.6.2.1 2-parameter Weibull model

The first step is to use the function fc_fit() with the vector of failure times for the time argument and

"weibull" for the model argument.

> weib_mod=fc_fit(time=taglife,model="weibull")

Output produced by the function is stored in the object weib_mod. The accepted in the model

argument are listed in the appendix of this manual or can be found in the help documentation for

the function (accessible by entering ?fc_fit in the R console).

Entering weib_mod into the console prints some of the output, including parameter estimates and

standard errors.

> weib_mod

P a g e | 14

weibull failure model object

Parameter estimates:
 est se
shape 12.08980 1.3689716
scale 16.35115 0.1986745

Placing the model object inside the plot() function produces a scatterplot of the fitted Weibull model

(red line) versus the observations (“+” symbols) that reflect downward steps in 𝑆̂(𝑡) .

> plot(weib_mod)

Dashed lines between the K-M estimates can be added by including the argument km=TRUE, and

confidence intervals for the K-M model can be added with the argument km.ci=TRUE (see below).

An alternative plot may be created with the argument type="resid", showing the difference between

the parametric model and the K-M model (i.e., “residuals at each observed failure time”). The

residual option can be helpful for determining when the parametric model estimates are above or

below the observations. For example, the plot on the right shows that the Weibull model

overestimates survival in the first half of the study.

> plot(weib_mod,km = TRUE,km.ci = TRUE)

> plot(weib_mod,type = "resid",km = TRUE,km.ci = TRUE)

P a g e | 15

The Weibull model appears to be a pretty good fit for the data, although the fitted line does weave

through the data over time. There may be a better alternative, so next we will try fitting the Vitality

2009 model.

3.6.2.2 Fitting the Vitality 2009 model

The Vitality 2009 model is estimated using fc_fit() in much the same way as before but now with

"vitality.ku" entered into the model argument.

> vit09_mod=fc_fit(time=taglife,model="vitality.ku")

> vit09_mod

vitality.ku failure model object

Parameter estimates:
 est se
r 6.2346e-02 0.0046263
s 8.5906e-08 NaN
k 5.7006e-03 0.0231610
u 6.4295e-02 0.0609970

Printing vit09_mod displays the four parameter estimates for the model. We see that the standard

error of the 𝑠 parameter could not be estimated.

We will now visualize the model fit as before.

> plot(vit09_mod,km = T,km.ci = T)

> plot(vit09_mod,type = "resid",km = T,km.ci = T)

P a g e | 16

This model appears to conform to the data slightly better than the Weibull model. However, it is

unclear whether the Vitality 2009 model is actually more parsimonious (i.e., does the improvement

in model fit warrant a model with two additional parameters?). We will rank the performance of

these two models using the GOF metric to help answer this question. First we will predict tag

survival for each model.

3.6.2.3 Obtaining predicted survival from models using fc_pred()

Once a model object is created, you can use it to predict the survival fraction at a given time. This

is accomplished by passing the model object and the time for which we would like survival

predicted to ofc_pre. For example, we will predict the survival fraction at 6, 12, 15, and 18 days

under each of the models estimated above.

> pred_times=c(6,12,15,18) # days whose survival we wish to predict

Weibull model predictions

> pred_s_weib=fc_pred(mod_obj=weib_mod,times=pred_times)

> pred_s_weib

[1] 0.99999455 0.97653702 0.70293295 0.04097672

Vitality model predictions

> pred_s_vit=fc_pred(mod_obj=vit09_mod,times=pred_times)

> pred_s_vit

[1] 0.96637473 0.93383827 0.77416444 0.02585396

We can see from these predictions that the survival estimates are lower for the vitality model in all

but the 15-day estimate.

P a g e | 17

3.6.3 Model comparisons

3.6.3.1 Combing failure models in a list

The models need to be placed in a list before they can be ranked. There are two options for doing

this: combining the two models into a list() object and running fc_combine, or rerunning fc_fit while

specifying a vector of more than one model name using the combine function c().

> fmods=fc_combine(list(weib_mod,vit09_mod)) # option 1

OR

> fmods=fc_fit(taglife,c("weibull","vitality.ku")) # option 2

Printing fmods provides a short description of the models in the list and a message indicating that

the model list can be ranked. Placing the model list object inside summary() provides details on the

parameter estimates for each model.

> fmods

Failure model list object

Contains the following 2 models:
 weibull ; vitality.ku

*use this object to compare models using the function: fc_rank()

Plotting fmods produces a survival function plot with the raw K-M estimates and the two models

labeled. Dashed lines connecting K-M estimates can be added with the argument km=T.

> plot(fmods)

P a g e | 18

3.6.3.2 Ranking failure time models based on GOF measure

Executing fc_rank()prints a table ranking the models in the list, and creates a new model list object

with the GOF ranking information. The fmods_R object stores this information and it can be printed

by the user at any time.

> fmods_R=fc_rank(fmods)

Candidate models ranked by goodness of fit measure:

 model SSE_KM n npars denom GOF
1 vitality.ku 0.0502537 50 2 47 0.0011
2 weibull 0.1824184 50 4 45 0.0041

The Vitality 2009 model has the lowest GOF score, and therefore ranks above the 2-parameter

Weibull. If these were the only two models being considered, then we would select the Vitality

2009 model and stop here.

The GOF measure is used to compare and rank models based on their fit to the data. It is a relative

measure, so it is possible for a model to have a high GOF rank compared to the other models but

to still be a poor fit for the data; this happens if none of the models fit well. The overall fit of a

model to the data is assessed in a lack-of-fit test as demonstrated in Example 2 (Section 3.7).

3.6.4 Simultaneous model fitting

A shortcut for fitting all nine parametric models in failCompare is to type "all" into the model

argument of fc_fit(). Printing fmods_all tells us the nine models were fit.

> fmods_all=fc_fit(taglife,model="all")

Fitting all available parametric survival models
fmods_all
Failure model list object

Contains the following 9 models:
 weibull ; weibull3 ; gompertz ; gamma ; lognormal ; llogis ; gengamma
; vitality.ku ; vitality.4p

*use this object to compare models using the function: fc_rank()

3.6.4.1 Ranking the full set of parametric models

Executing fc_rank on fmods_all returns a table ranking all nine models and stores all the information

in a ranked model list object.

P a g e | 19

> fmods_all_R=fc_rank(fmods_all)

Candidate models ranked by goodness of fit measure:

 model SSE_KM n npars denom GOF
1 vitality.ku 0.05025370 50 4 45 0.0011
2 vitality.4p 0.05297191 50 4 45 0.0012
3 gompertz 0.17255657 50 2 47 0.0037
4 weibull 0.18201868 50 2 47 0.0039
5 weibull3 0.18241771 50 3 46 0.0040
6 gengamma 0.21987838 50 3 46 0.0048
7 llogis 0.24616132 50 2 47 0.0052
8 gamma 0.74189324 50 2 47 0.0158
9 lognormal 0.89427673 50 2 47 0.0190

The top ranking model is labeled vitality.ku which corresponds to the Vitality 2009 model. We can

further see that the vitality.4p (Vitality 2013) model is ranked a close second and that the Gompertz

model beat out the 2-parameter Weibull model that we considered before.

Placing a ranked model list inside the plot() function displays up to three models at a time; model

rank is shown in parentheses after the model name. The three top-ranking models are displayed by

default, but specific subsets can also be obtained by supplying a vector of up to three names to the

model argument. Below is a default plot and a plots of sets of three models that shared the middle

and lowest rankings (top right and bottom left).

> plot(fmods_all_R,main="top ranked")

> plot(fmods_all_R,model=c("weibull","weibull3","gengamma"),

main="middle ranked")

> plot(fmods_all_R,model=c("llogis","lognormal","gamma"),

main="bottom ranked")

P a g e | 20

Figure 6. Plots of the top-ranked, middle-ranked, and bottom-ranked three models for the

“sockeye” example data set. The top ranked model all fit the data well, especially after the 15-day

mark, whereas the poorest ranking models depart from the data significantly. The Vitality 2009

model is unique in that it is the only model with an initial linear decline in survival that intersects

with early failures in the “shoulder” of the curve, so it appears to be the best choice.

P a g e | 21

3.7 Example 2: Testing Methods for Failure Time Models

In this example, we demonstrate the testing procedures contained within the failCompare package.

The first of these, fc_diff(), is used to test for differences among groups in a combined failure-time

data set. The second test, fc_test(), assesses the general lack-of-fit of a model; this is an absolute

measure that is relevant to a single model, unlike the relative measure of model performance (i.e.,

GOF measure; Skalski and Whitlock 2020).

If you are continuing to this example from the first it may be wise to restart R and reload the

failCompare package. This will prevent any confusion resulting from accidentally accessing

previously defined objects in the environment. Alternatively, you can remove all objects in the

workspace by running the command: rm(list=ls()) (with nothing inside of it). The example dataset

for this task is titled “chinook.” Similar to example 1, it contains data describing the time until

acoustic tag deactivation without censoring. As before, we can load the dataframe into the R

environment by using data(). The structure of the data is examined below using the function str().

> data(chinook)

> str(chinook)

'data.frame': 80 obs. of 2 variables:
 $ days : num 18.7 22.7 33.3 34.1 34.4 ...
 $ season: Factor w/ 2 levels "spring","summer": 1 1 1 1 1 1 1 1 1 1 ..
.

This reveals that we are working with a dataset with 80 observations. This time there is a second

column identifying the group to which each tag belongs, a factor variable called “season” consisting

of two groups: “spring” and “summer.” A frequency table for this second column further indicates

that there are 33 tags in the spring group and 47 tags in the summer group.

> table(chinook$season)

spring summer
 33 47

We would like to know whether it is most appropriate to pool all tags when modeling tag failure or

model each group separately.

To begin, we visualize the data using a histogram and a plot, notice the additional argument for

group that distinguishes between groups in the plots.

> surv=fc_surv(chinook$days)

> fc_plot(chinook$days,surv,group = chinook$season)

P a g e | 22

These plots show a bimodal distribution of the combined failure times and indicate that the spring

tag failure times are earlier on average. The survival function is also far from smooth, particularly

before day 45, when the majority of “spring” group of tags failed. Given that the failure time

distribution appears to differ by season it may not be justified to pool them, but how do we know

for sure?

3.7.1 Log-rank test for comparing groups

Fortunately, failCompare includes a function for performing a log-rank test, which tests the null

hypothesis that two groups of observations arise from the same distribution. A log-rank test can be

performed by providing the name of the dataframe and specifying the failure time (time) and a

categorical grouping variable (group). The test is carried out using the survival package, assuming

a 𝜒2 distribution for the test statistic.

> fc_diff(data=chinook,time="days",group="season")

Call:
survdiff(formula = f1, data = data)

 N Observed Expected (O-E)^2/E (O-E)^2/V
season=spring 33 33 10.9 44.96 63.9
season=summer 47 47 69.1 7.08 63.9

Chisq= 63.9 on 1 degrees of freedom, p= 1e-15

The output shows the observed (O) versus the expected (E) values and the test statistic Chisq. The

P-value for the test statistic is extremely small (le-15), indicating that there is significant evidence

to reject the null hypothesis that the failure time distribution is the same for the two seasons.

We now proceed by fitting separate models to the spring and summer groups, which we denote

with the suffix _SPR and _SUM, respectively. First, we subset the data into groups, and then we fit

the value and rank all models for all groups.

Subsetting the groups

> chn_SPR=subset(chinook,season=="spring")

> chn_SUM=subset(chinook,season=="summer")

P a g e | 23

3.7.2 Ranking models separately for two groups

Next, we fit the nine different default models in failCompare to each dataset separately by entering

"all" into the model argument

Ranking of models for season="spring"

> chnSPR_mods=fc_fit(time=c(chn_SPR$days,42,42.4),model="all")

Fitting all available parametric survival models

> chnSPR_mods_R=fc_rank(chnSPR_mods)

Candidate models ranked by goodness of fit measure:

 model SSE_KM n npars denom GOF
1 llogis 0.5148720 33 2 30 0.0172
2 vitality.ku 0.5827913 33 4 28 0.0208
3 gamma 0.6258051 33 2 30 0.0209
4 lognormal 0.6398952 33 2 30 0.0213
5 gengamma 0.6537550 33 3 29 0.0225
6 vitality.4p 0.6359227 33 4 28 0.0227
7 weibull3 0.6832296 33 3 29 0.0236
8 weibull 0.7103504 33 2 30 0.0237
9 gompertz 0.7849153 33 2 30 0.0262

Ranking of models for season="summer"

> chnSUM_mods=fc_fit(time=chn_SUM$days,model="all")

Fitting all available parametric survival models

> chnSUM_mods_R=fc_rank(chnSUM_mods)

Candidate models ranked by goodness of fit measure:

 model SSE_KM n npars denom GOF

1 vitality.ku 0.01928644 47 4 42 0.0005
2 vitality.4p 0.03373248 47 4 42 0.0008
3 gompertz 0.12668419 47 2 44 0.0029
4 weibull 0.16703594 47 2 44 0.0038
5 weibull3 0.16704176 47 3 43 0.0039
6 gengamma 0.19689311 47 3 43 0.0046
7 llogis 0.23086554 47 2 44 0.0052
8 gamma 0.86607690 47 2 44 0.0197
9 lognormal 0.96823470 47 2 44 0.0220

The rankings based on the GOF metric indicate that the log-logistic (llogis) and the Vitality 2009

model (vitality.ku) provide the best fits to the spring and summer groups, respectively.

Plotting the three top-ranking models for each season allows us to examine the quality of the fit.

We can add a main title to each of the plots by providing a character string for the optional argument

main. The function also prints a message reminding the user of the other models in the list that they

are not seeing in the plot.

P a g e | 24

> plot(chnSPR_mods_R,main="spring")

Additional models with rankings: weibull(4); weibull3(5); gompertz(6);
lognormal(7); gengamma(8); vitality.4p(9)

> plot(chnSUM_mods_R,main="summer")

Additional models with rankings: weibull(4); weibull3(5); gamma(6); log
normal(7); llogis(8); gengamma(9)

Looking first at the spring data, we see that although the log-logistic model is the highest ranking,

it does not appear to fit the spring group all that well. Conversely, the Vitality 2009 model

(vitality.ku) fits the summer data quite well, and even the second and third ranked models are

competitive. We will select the vitality 2009 model from among the list of candidates using the

fc_select() function and then print parameter estimates.

> chnSUM_vit09=fc_select(mod_ls = chnSUM_mods_R,model = "vitality.ku")

> chnSUM_vit09

vitality.ku failure model object

Parameter estimates:
 est se
1 2.0898e-02 0.00098417
2 6.3562e-03 0.00493800
3 1.7174e-03 0.00665980
4 1.5304e-06 0.00243200

The obviously poor fit to the spring data should make us skeptical of the validity of the model, but

it would be good to use a statistical test to confirm this.

3.7.3 Kolmogorov-Smirnov test (simulation-based)

We now examine the general lack-of-fit of the top model using a simulation-based Kolmogorov-

Smirnov test. This testing method was described in Lilliefors (1967) and was used to compare all

P a g e | 25

nine default models in failCompare in Skalski and Whitlock (2020). The test works by fitting a

parametric model to the data, calculating a test statistic by which to compare data to the failure time

model used to fit it, and then simulating random data sets of the same size and recomputing the test

statistic to approximate the sampling distribution. Provided that enough samples are drawn, we can

accurately approximate a P-value for the test by determining the proportion of the sampling

distribution that is larger (i.e., more extreme) than the observed statistic. We perform this test using

the command fc_test with the model argument matching the name of the top-ranking model for this

population of tags, and the number of iterations (iters) set to 100,000. It may take up to a minute

for the following code to run. If the argument plot=TRUE is included, you a histogram of the

sampling distribution of the test statistic (D) is displayed, with a vertical red line denoting the

observed value. The p-value of the test will be printed in the console and on the right side of the

plot.

> fc_test(times = chn_SPR$days,model = "llogis",iters = 100000,plot=TRUE)

Results of a one-sample Kolmogorov-Smirnov test based on a simulation

model = llogis

iterations = 1e+05

observed test statistic
 D[obs] = 0.2648246

p-value = 0.01607

The P-value below 𝛼 = 0.05 indicates that the observed data do not adhere to log-logistic model.

It should be noted that the P-value may change slightly from run-to-run because of the inherent

randomness of the bootstrap. The default number of iterations is 50,000. If the histogram of the

P a g e | 26

sample statistic is not smooth and/or the P-value varies significantly from run to run, the number

of iterations should be increased.

Because the log-logistic model was the best model available, it is reasonable to assume that there

are no appropriate parametric models for describing the data; thus, it may be best to avoid

interpreting a parametric model and proceed with interpreting the nonparametric K-M model

(Section 3.11).

3.7.4 Selecting the Kaplan-Meier model from a model list object

An option for selecting the K-M model exists in failCompare if the user enters kaplan-meier into the

model argument of fc_select().

> chnSPR_KM=fc_select(mod_ls = chnSPR_mods_R,model = "kaplan-meier")

Printing the K-M model returns the estimates and confidence intervals for the cumulative survival

to each unique failure time in the data set.

> chnSPR_KM

Kaplan-Meier estimates for increments between failure times
 time est lcl ucl
1 0.00 1.00000000 1.000000000 1.0000000
2 18.74 0.97142857 0.917774047 1.0000000
3 22.70 0.94285714 0.869010963 1.0000000
4 32.00 0.91428571 0.826091339 1.0000000
5 33.00 0.85714286 0.748711879 0.9812772
6 33.11 0.82857143 0.712664580 0.9633292
7 33.13 0.80000000 0.677876107 0.9441253
8 33.30 0.77142857 0.644136245 0.9238760
9 34.08 0.74285714 0.611299632 0.9027271
10 34.40 0.71428571 0.579261536 0.8807836
11 34.58 0.68571429 0.547944329 0.8581238
12 34.64 0.65714286 0.517289404 0.8348068
13 34.70 0.62857143 0.487252103 0.8108781
14 34.80 0.60000000 0.457798406 0.7863723
15 34.82 0.57142857 0.428902724 0.7613162
16 34.83 0.54285714 0.400546403 0.7357297
17 35.00 0.51428571 0.372716736 0.7096268
18 35.03 0.48571429 0.345406318 0.6830169
19 35.07 0.45714286 0.318612700 0.6559048
20 35.08 0.42857143 0.292338278 0.6282909
21 35.10 0.40000000 0.266590415 0.6001716
22 35.18 0.37142857 0.241381805 0.5715393
23 35.20 0.34285714 0.216731133 0.5423818
24 35.21 0.31428571 0.192664100 0.5126825
25 35.41 0.28571429 0.169214967 0.4824198
26 35.64 0.25714286 0.146428847 0.4515671
27 35.80 0.22857143 0.124365165 0.4200927
28 42.00 0.17142857 0.082749766 0.3551400
29 42.40 0.14285714 0.063455758 0.3216125
30 42.80 0.11428571 0.045441103 0.2874319

P a g e | 27

31 43.00 0.08571429 0.029049945 0.2529071
32 44.00 0.05714286 0.014877206 0.2194838
33 46.40 0.02857143 0.004139792 0.1971902
34 48.00 0.00000000 0.000000000 0.0000000

Plotting the K-M model produces a plot similar to the one above only with discontinuous steps

corresponding to the observed failure time.

plot(chnSPR_KM,main="spring")

P a g e | 28

3.8 Example 3: Working with Censored Data

Censored data occur when not all study subjects have an observed failure time. All that is known

about the censored observations is that the subject did not fail for at least a certain duration. If these

observations are not handled correctly, then the survival function could be severely biased. In the

following two examples, we illustrate approaches for handling right censoring, which is the most

common data complication in failure time studies.

Right-censoring occurs when the initiation time for study subjects is known, but the failure time of

some subjects is not. This occurs because the study concludes before all possible failures have

occurred (Type I censoring) or because individual subjects dropped out before the end of the study

and their failure time could not be recorded (Type II censoring). Refer to the section above titled

“Censored Observations” for a more detailed explanation of these mechanisms and how they are

dealt with during model estimation.

3.8.1 Type I censoring

The following example concerns monitoring the mortality of fish that are exposed to gas

supersaturation. Gas supersaturation occurs when water contains an overabundance of dissolved

gas, a state that sometimes occurs at the outflow of dams and may be lethal to fish (Weitkamp and

Katz 1980). This study is an example of Type I censoring because the study was terminated after

30 days, at which point a portion of the study subjects were still alive.

We load the data set in as before using data(). Printing the dataframe reveals that 9 of the 35

observations (~26%) all have a value of 30 and TRUE under the column titled censored.

> data(trout)

#printing the dataframe
> trout

 (output continued)
 days censored …
 8.66 FALSE 24.29 FALSE
 10.3 FALSE 24.35 FALSE
 12.63 FALSE 24.51 FALSE
 14.73 FALSE 24.62 FALSE
 15.67 FALSE 24.8 FALSE
 16.01 FALSE 26.76 FALSE
 16.26 FALSE 8.81 FALSE
 16.32 FALSE 8.91 FALSE
 17.46 FALSE 30 TRUE
 18.78 FALSE 30 TRUE
 19.62 FALSE 30 TRUE
 19.92 FALSE 30 TRUE
 20.13 FALSE 30 TRUE
 21.34 FALSE 30 TRUE
 22.93 FALSE 30 TRUE
 23.59 FALSE 30 TRUE
 23.64 FALSE 30 TRUE
 24.26 FALSE

P a g e | 29

We will save the failure times (observed mortalities in this case) in a vector object for convenience.

saving a vector of the failure times for convenience

> mort_day=trout$days

Next, we illustrate the consequences of failing to properly address censored observations. First,

treating the censored observations as actual failure times ignores the fact that these subjects could

have survived longer and artificially lowers the height of survival function. That is, it indicates a

more intense mortality process than is appropriate. The second option of simply omitting the

censored fish causes the survival function to drop even more abruptly. We illustrate these two

incorrect approaches in the left and middle plots below. The plot on the right shows a survival

function where the censoring is handled correctly; note that the estimated survival functions s(t) do

not extend to 0 in the right plot.

These plots were created using the following code, which showcases some new arguments for the

functions fc_surv(), fc_plot(), and fc_fit() (used in previous examples).

Code for the left plot:

survival function (treating censored observations as actual failure times)

> unadj_S=fc_surv(time = mort_day)

> fc_plot(time = mort_day,

 surv = unadj_S,

 hist=F,

 main="Ignore")

Code for the middle plot:

survival function (ignoring censoring)

> mort_day_sub30=mort_day[mort_day<30] # subsetting

> omit_S=fc_surv(time = mort_day_sub30)

> fc_plot(time = mort_day_sub30,

 surv = omit_S,

 hist=F,

 main="Omit")

P a g e | 30

Code for the right plot:

survival function (with right censoring)

> cens_S=fc_surv(time = mort_day,

 rc.value = 30)

> fc_plot(time = mort_day,

 surv = cens_S,

 hist=F,

 main="Properly Censored")

Within fc_plot(), we use the argument hist=FALSE to prevent histograms of failure time from being

created (as in example 2), and the argument main overrides the default main title for each plot. The

object mort_day_sub30 represents a subset of the failure times that includes only those below the

study’s conclusion at 30 days. The object cens_S is created using fc_surv() as above but with the

argument rc.value=30, used to indicate that the observations ≥ 30 are right-censored and not actual

failure times.

Finally, we use the same rc.value=30 argument inside the fc_fit function to fit all available

failCompare models, and then rank the list of models using fc_rank. Importantly, the sample

survival function estimates are the K-S estimates based on the calculation in equation 5 (page 4)

and the GOF metric is based on the distance between the K-M estimates and the parametric model

survival functions, all of which account for the censoring.

Fitting models

> trout_mods=fc_fit(mort_day,rc.value = 30,model="all")

Ranking models

> trout_mods_R=fc_rank(trout_mods)

Candidate models ranked by goodness of fit measure:

 model SSE_KM n npars denom GOF
1 vitality.4p 0.4512892 35 2 32 0.0141
2 vitality.ku 0.4524401 35 4 30 0.0151
3 weibull 0.5548681 35 2 32 0.0173
4 gompertz 0.5428142 35 3 31 0.0175
5 gamma 0.6020101 35 2 32 0.0188
6 llogis 0.6131972 35 2 32 0.0192
7 gengamma 0.6073838 35 4 30 0.0202
8 lognormal 0.6641553 35 2 32 0.0208

From this, we can see that the Vitality 2013 model (vitality.4p) is top ranking model, followed

closely by the Vitality 2009 model (vitality.ku). The plot below shows the fit of the top-performing

models. Notice that the survival functions do not reach 0 within the study period, indicating that

fitted models and K-M estimates are accounting for right-censoring. Censored times (at or beyond

𝑡 = 30) are denoted with the grayed-out symbol at 𝑠(𝑡) = 0.

P a g e | 31

3.8.2 Type II censoring

Our final censoring example describes the case in which study subjects drop out while the

investigation is ongoing rather than only at the end of the study (e.g., Type II censoring). This

example data set can be loaded into R by running data(pike). Despite the “fishy” name, this data set

is actually named for the author of a study on cancer deaths in rats and is given as an example in

Lee and Wang (2003).

We begin by loading and viewing the data.

> data(pike)

> pike (output continued)
 days death days death
1 142 1 12 233 1
2 156 1 13 239 1
3 173 1 14 240 1
4 198 1 15 261 1
5 204 0 16 280 1
6 205 1 17 280 1
7 232 1 18 296 1
8 232 1 19 296 1
9 233 1 20 323 1
10 233 1 21 344 0
11 233 1

There are 21 study subjects, the failure times are recorded in days, and the column titled “death” is

an indicator variable with observed deaths denoted by 1 and censored observations by 0. Unlike in

the previous example, the two censored observations do not both fall at the end of the study: one is

at day 204 and another is at 344. In this case, we must account for the censoring using the censorID

P a g e | 32

argument in the function fc_fit. For convenience we first define two vectors as inputs associated

with the two columns days and death.

mort=pike$days # represents observed mortality or censoring

death=pike$death # zeroes indicate censoring

The original study modeled the death of rats using a Weibull model with Type II censoring. Here,

we will compare three of our parametric models: the 2-parameter Weibull, Gompertz, and the

lognormal model. We do this using fc_fit this time listing the models we want to fit in a character

string.

> pike_mods=fc_fit(time=mort,censorID=death,model=c("lognormal", "weibull","gompertz"))

After defining the model list, we rank the model fit using fc_rank.

> pike_mods_ranked=fc_rank(pike_mods)

Candidate models ranked by goodness of fit measure:

 model SSE_KM n npars denom GOF
1 lognormal 0.1259917 21 2 18 0.0070
2 weibull 0.2127602 21 2 18 0.0118
3 gompertz 0.2734661 21 2 18 0.0152

> plot(pike_mods_ranked)

We see from this ranking that the lognormal model outperforms the alternatives. Also, notice that

the two grayed out “+” signs correspond to the censored observations at 204 and 344 days.

P a g e | 33

We will now select and summarize the lognormal model.

> pike_lnrm_mod=fc_select(pike_mods_ranked,model = "lognormal")

> summary(pike_lnrm_mod)

Summary of lognormal failure model object

Call:
flexsurv::flexsurvreg(formula = survival::Surv(time = y, event = non_ce
n) ~
 1, dist = model[i])

Estimates:
 est L95% U95% se
meanlog 5.4727 5.3722 5.5732 0.0513
sdlog 0.2309 0.1675 0.3181 0.0378

N = 21, Events: 19, Censored: 2
Total time at risk: 5033
Log-likelihood = -104.2402, df = 2
AIC = 212.4804

P a g e | 34

4 Appendix

4.1 Parametric Model Descriptions

The following sections summarize distinguishing characteristics and key functions (density,

survival, and hazard) of the nine parametric failure time models contained within failCompare

(version 1.0). Information on the R package used to fit the model internally and a mapping of

parameter names to equations are also provided.

4.1.1 Models Based on Probability Distributions

Failure time models organized under this subheading are similar in that they are all based on

positive continuous distributions describing the time until failure from which the survival function

is derived using their cumulative distribution function (𝑆(𝑡) = 1 − 𝐹(𝑡)). Almost all models

described here belong to the generalized F distribution family. This group of models is in contrast

to the Vitality family of models, which have “evolving” density functions (Section 4.1.2).

P a g e | 35

4.1.1.1 Weibull model (2-parameter)

Label in failCompare: "weibull"

Model fitting package: flexsurv

Parameter definitions: shape = 𝛽 ; scale = 𝜆

Description:

Log-linear hazard function describing accelerating (or decelerating) failures over time. Also

provides the benefit of closed-form estimates for the three defining functions. Reduces to

exponential distribution with scale parameter 𝜆 when 𝛽 = 0.

Density function:

𝑓(𝑡) =
𝛽

𝜆
(

𝑡

𝜆
)

𝛽−1

𝑒
−(

𝑡
𝜆

)
𝛽

Survival function:

𝑆(𝑡) = 𝑒
−(

𝑡
𝜆

)
𝛽

Hazard function:

ℎ(𝑡) =
𝛽

𝜆
(

𝑡

𝜆
)

𝛽−1

P a g e | 36

4.1.1.2 Weibull model (3-parameter)

Label in failCompare: weibull3

Model fitting package: Specific to failCompare

Parameter definitions: shape = 𝛽 ; scale = 𝜆 ; thrsh = 𝛾

Description:

Equivalent to 2-parameter Weibull, but with a threshold parameter (𝛾) which defines an initial

“failure-free” interval and may shift the distribution in time. Reverts to 2-parameter Weibull when

𝛾 = 0 and to an exponential when 𝛽 = 𝛾 = 0.

Density function:

𝑓(𝑡) =
𝛽

𝜆
(

𝑡 − 𝛾

𝜆
)

𝛽−1

𝑒
−(

𝑡−𝛾
𝜆

)
𝛽

Survival function:

𝑆(𝑡) = 𝑒
−(

𝑡−𝛾
𝜆

)
𝛽

Hazard function:

ℎ(𝑡) =
𝛽

𝜆
(

𝑡 − 𝛾

𝜆
)

𝛽−1

P a g e | 37

4.1.1.3 Gompertz model

Label in failCompare: "gompertz"

Model fitting package: flexsurv

Parameter definitions: shape = 𝑎 ; rate = 𝑏

Description:

Log-linear hazard function that allows more rapid acceleration of failures, relative to the 2- and 3-

parameter Weibull. Reverts to exponential model when 𝑎 = 0. Note that 𝑎 = 𝑒𝛾 in equation (9).

Density function

𝑓(𝑡) = 𝑎𝑒𝑏𝑡 ⋅ 𝑒𝑥𝑝[(−𝑎/𝑏) ⋅ (𝑒𝑏𝑡 − 1)]

Survival function

𝑆(𝑡) = 𝑒𝑥𝑝[(−𝑎/𝑏)(𝑒𝑏𝑡 − 1)]

Hazard Function

ℎ(𝑡) = 𝑎𝑒𝑏𝑡

P a g e | 38

4.1.1.4 Log-normal model

Label in failCompare: "lognormal"

Model fitting package: flexsurv

Parameter definitions: meanlog = 𝜇 ; sdlog = 𝜎

Description:

Hazard function that increases from the origin (0,0) and can reach a peak and decline at different

rates.

𝑓(𝑡) =
1

𝑡𝜎√2𝜋
𝑒

(−
1

2𝜎2⌈log(𝑡)−𝜇⌉2)

Survival function

𝑆(𝑡) =
1

𝜎√2𝜋
∫

1

𝑡

∞

𝑡

𝑒
(−

1
2𝜎2⌈log(𝑡)−𝜇⌉2)

𝑑𝑡 = 1 − 𝛷[(𝑙𝑜𝑔(𝑡) − 𝜇)/𝜎]

Hazard Function

A simplified form of the hazard function is calculated by making the following substitution:

𝑎 = 𝑒−𝜇, which yields:

ℎ(𝑡) =

1

𝑡𝜎√2𝜋
𝑒

−
𝑙𝑜𝑔(𝑎𝑡)2

2𝜎2

1 − 𝛷(𝑙𝑜𝑔(𝑎𝑡/𝜎))

P a g e | 39

4.1.1.5 Log-logistic model

Label in failCompare: "llogis"

Model fitting package: flexsurv

Parameter definitions: shape = 𝑎 ; scale = 𝑏

Description:

Similar to the log-normal model, but with thicker tails in the density function. Benefit of having a

closed-form for the three distribution functions.

Density function

𝑓(𝑡) =
(𝑎/𝑏)(𝑡/𝑏)𝑎−1

[1 + (𝑡/𝑏)𝑎]2

Survival function

𝑆(𝑡) =
1

1 + (𝑡/𝑏)𝑎

Hazard function

ℎ(𝑡) =
(𝑎/𝑏)(𝑡/𝑏)𝑎−1

1 + (𝑡/𝑏)𝑎

P a g e | 40

4.1.1.6 Gamma model (2-parameter)

Label in failCompare: "gamma"

Model fitting package: flexsurv

Parameter definitions: shape = 𝑎 ; scale = 𝑠

Description:

Hazard function may decrease or increase to approach a particular value (e.g., three of the four

hazard functions depicted below approach the value 1/2). This 𝑎 and 𝑠 parameterization below is

consitent with the dgamma() documentation in the base R stats package. An alternate

parameterization replaces scale with rate = 1/𝑠

Density function

𝑓(𝑡) =
𝑡𝑎−1𝑒−𝑡/𝑠

Γ(𝑎)𝑠𝑎

Survival function

𝑆(𝑡) = 1 − ∫
𝑡𝑎−1𝑒−𝑡/𝑠

Γ(𝑎)𝑠𝑎

𝑡

0

𝑑𝑡

Hazard function

No closed-form version exists.

P a g e | 41

4.1.1.7 Generalized gamma model (3-parameter)

Label in failCompare: "gengamma"

Model fitting package: flexsurv

Parameter definitions: mu = 𝜇 ; sigma = 𝜎 ; Q = 𝑄

Description:

The additional parameter allows for greater kurtosis and can produce hazard functions that initially

increase and then decrease and vice versa. This distribution can also take on a “bathtub-shaped”

hazard function that is useful for characterizing populations with high risk of mortality early and

late in life. failCompare implements the flexsurv version of the generalized gamma described by

Prentice (1974) which estimates parameters using a log-gamma distribution with parameters: 𝜇, 𝜎,

𝑄. Below we describe the distributions using the more recognizable parameterization with

parameters 𝑎 and 𝑠 as in the 2-parameter gamma model above but with the additional parameter 𝑏.

Conversion from the dgamma() to Prentice (1974)

𝜇 = 𝑙𝑜𝑔(𝑠) +
𝑙𝑜𝑔(𝑎)

𝑏

𝜎 =
1

(𝑏√𝑎)

𝑄 =
1

√𝑎

Conversion from Prentice (1974) to dgamma()

𝑎 = (
1

𝑄
)

2

, 𝑏 =
𝑄

𝜎
 , 𝑠 = 𝑒𝑥𝑝(𝜇 −

𝑙𝑜𝑔(𝑎)

𝑏
)

Density function

𝑓(𝑡) =
𝑏𝑡𝑏𝑎−1𝑒−(𝑡/𝑠)𝑏

Γ(𝑎)𝑠𝑎𝑏

Survival function

𝑆(𝑡) = 1 − ∫
𝑏𝑡𝑏𝑎−1𝑒−(𝑡/𝑠)𝑏

Γ(𝑎)𝑠𝑎𝑏

𝑡

0

𝑑𝑡

Hazard function

No closed-form version exists.

Plots below are made with identical parameter values as the 2-parameter gamma distribution

example above, which is a special cased of the generalized gamma with 𝑏 = 1, but with the 𝑏

parameter value increased (top row) and decreased (bottom row) by 0.2 to show this parameter’s

effect on the shape of the functions.

P a g e | 42

P a g e | 43

4.1.2 Vitality Models

The two vitality models in failCompare require greater elaboration compared to other models

because they combine two survival processes (intrinsic and extrinsic). The Vitality models have

“evolving” density functions produced by a stochastic model of vitality that declines over a lifetime

along with extrinsic forces that can cause accidental mortality. Both models have four parameters,

two in common with one another. The common parameter 𝑟 describes the average rate of vitality

loss; 𝑠 describes the variability in the rate of loss among individuals. The Vitality 2009 model (Li

and Anderson 2009) assumes an initial distribution of vitalities when 𝑡 = 0, defined by parameter

𝑢, and an exponential model of extrinsic mortality acting on the entire population, defined by 𝑘.

The Vitality 2013 model (Li and Anderson 2013) assumes an extrinsic failure process consisting

of challenge events that occur throughout the lifetime of the population and which preferentially

eliminate low vitality individuals. The frequency of challenges is defined by 𝜆 and the magnitude

of these events by 𝛽.

4.1.2.1 Vitality 2009

Label in failCompare: "vitality.ku"

Model fitting package: vitality

Parameter definitions:

r = 𝑟 ; s = 𝑠 ; k = 𝑘 ; u = 𝑢

intrinsic

𝑟 = rate of vitality loss, 𝑠 = vitality spread over time, 𝑢 = CV of initial vitality at 𝑡 = 0

extrinsic

𝑘 = accidental failure rate

Description

Distinguishing features of the Vitality 2009 model are that three parameters (𝑟, 𝑠, and 𝑢) define the

intrinsic failure process, whereas only a single parameter (𝑘) defines an independent extrinsic

(accidental) morality rate. Below we denote the intrinsic and extrinsic survival components with

subscripts 𝐼 and 𝐸, respecively. The time to first passage of the zero boundary follows an inverse-

Gaussian distribution, and the intrinsic survival function for the model is obtained by integrating

the time to first passage over the values of a normal distribution of initial vitality surrounding 1.0:

Survival function (intrinsic)

𝑆𝐼(𝑡) = 1 − ∫ 𝑓𝐼

∞

−∞

(𝑡|𝑣0)𝑝(𝑣0) 𝑑𝑣0

where 𝑝(𝑣0) is the initial vitality distribution with a mean of 1.0 and coefficient of variation 𝑢. This

function is simplified as:

P a g e | 44

𝑆𝐼(𝑡) = [𝛷 (
1 − 𝑟𝑡

√𝑢2 + 𝑠2𝑡
) − 𝑒𝑥𝑝 (

2𝑢2𝑟2

𝑠4
+

2𝑟

𝑠2) 𝛷 (−
1 + 𝑟𝑡 +

2𝑢2𝑟
𝑠2

√𝑢2 + 𝑠2𝑡
)]

where 𝑟 is rate of vitality loss, 𝑠 is the spread of the vitality loss, and 𝑢 defines the coefficient of

variation (CV) of the initial vitality distribution.

This underlying stochastic process produces a density function that evolves over time, beginning

with a half-normal distribution with a vitality value near 1 then shifting to a normal distribution as

vitality deceases. Over time, the distribution becomes more asymmetric resembling a gamma-like

distribution with the probability density mass increasingly accumulating near the zero boundary.

The intrinsic survival function of the Vitality 2009 model can be approximated integrating the

initial vitality distribution and the stochastic Wiener process.

Evolving density function

𝑓𝐼(𝑣|𝑡) =
𝑒𝑥𝑝 (−

(𝑣 − 1 + 𝑟𝑡)2

2(𝑢2 + 𝑠2𝑡)
) [1 − 𝑒𝑥𝑝 (−

2𝑣(𝑟𝑢2 + 𝑠2)
𝑠2(𝑢2 + 𝑠2𝑡)

)]

√2𝜋(𝑢2 + 𝑠2𝑡)

where 𝑣 is the relative density of the vitality curve at time 𝑡.

The extrinsic component of the model is much simpler, and is defined as an exponential survival

distribution with parameter 𝑘 (where 𝑘 =
1

𝜆
 in equation 6):

Survival function (extrinsic)

𝑆𝐸(𝑡) = 𝑒−𝑘𝑡

Survival function (combined)

The combined survival function is the joint probability of having a vitality value greater than zero

and not suffering extrinsic (accidental) mortality:

𝑆(𝑡) = 𝑆𝑖(𝑡) ⋅ 𝑆𝐸(𝑡)

Hazard function

The hazard rates for the two processes are additive, and the exponential hazard rate is simply 𝑘,

owing to the “memoryless” property of the extrinsic distribution.

ℎ(𝑡) =
𝑓𝐼(𝑡)

𝑆(𝑡)
+ 𝑘

P a g e | 45

P a g e | 46

4.1.2.2 Vitality 2013

Label in failCompare: "vitality.ku"

Model fitting package: vitality

Parameter definitions:

r = 𝑟 ; s = 𝑠 ; lambda = 𝜆 ; beta = 𝛽

intrinsic

𝑟 = rate of vitality loss, 𝑠 = vitality spread over time

extrinsic

𝜆 = frequency of random survival challenges, 𝛽 = magnitude of challenges

Description

Parameters 𝑟 and 𝑠 correspond to the definitions given above for the Vitality 2009 model. A

distinguishing characteristic of the 2013 model is that there are 2 parameters that characterize

extrinsic mortality: the frequency of random survival challenges (𝜆) and the magnitude of

challenges. Whether an individual dies given a challenge depends on its vitality value relative to

the challenge magnitude. This has the effect of preferentially eliminating individuals that happen

to have lower vitality at a given time. The challenge frequency is Poisson distributed with parameter

𝜆, and the distribution of challenge magnitudes is exponentially distributed with scale parameter 𝛽

(corresponding to 𝜆 in equation 6). Like the Vitality 2009 version, this model is extremely flexible

and can capture a minority of earlier failures prior to the main decline. This model is uniquely able

to fit failure time models seemingly without a right tail on the survival function.

Hazard function (Intrinsic)

ℎ𝐼(𝑡) =
𝑡−3/2𝑒(1−𝑟𝑡)2/2𝑠2𝑡

𝑠√2𝜋 (𝛷 [
1 − 𝑟𝑡

𝑠√𝑡
] − 𝑒2𝑟/𝑠2

 ⋅ 𝛷 [−
1 + 𝑟𝑡

𝑠√𝑡
])

Hazard function (Extrinsic)

ℎ𝐸(𝑡) = 𝜆 𝑒−(1−𝑟𝑡)/𝛽

Hazard function (Combined)

ℎ(𝑡) = ℎ𝐼(𝑡) + ℎ𝐸(𝑡)

Survival function (Combined)

𝑆(𝑡) = [𝛷 (
1 − 𝑟𝑡

𝑠√𝑡
) − 𝑒𝑥𝑝 (

2𝑟

𝑠2
) 𝛷 (−

1 + 𝑟𝑡

𝑠√𝑡
)] 𝑒𝑥𝑝 [

𝜆𝛽

𝑟
𝑒

−
1
𝛽 (𝑒

𝑟𝑡
𝛽 − 1)]

P a g e | 47

P a g e | 48

5 References

Anderson, J. J. 1992. A vitality-based stochastic model for organism survival. Pages 256–277

Individual-based models and approaches in ecology. Editor: DeAngelis, D.L. CRC press Boca

Raton, FL.

Blischke, W. R., and D. N. P. Murthy. 2011. Reliability: Modeling, Prediction, and Optimization.

John Wiley & Sons.

Burnham, K. P., and D. R. Anderson. 2007. Model selection and multimodel inference: a

practical information-theoretic approach. Springer Science & Business Media.

Hosmer, D. W., S. Lemeshow, and S. May. 2008. Applied survival analysis: regression modeling

of time-to-event data. John Wiley & Sons, Hoboken, N.J.

Jackson, C. H. 2016. flexsurv: a platform for parametric survival modeling in R. Journal of

Statistical Software 70. Europe PMC Funders.

Kalbfleisch, J. D., and R. L. Prentice. 2011. The statistical analysis of failure time data. John

Wiley & Sons.

Kaplan, E. L., and P. Meier. 1958. Nonparametric estimation from incomplete observations.

Journal of the American statistical association 53(282):457–481. Taylor & Francis.

Lee, E. T., and J. Wang. 2003. Statistical methods for survival data analysis. John Wiley & Sons.

Leemis, L. M. 1995. Reliability: probabilistic models and statistical methods. Prentice Hall,

Englewood Cliffs, N.J.

Li, T., and J. J. Anderson. 2009. The vitality model: A way to understand population survival and

demographic heterogeneity. Theoretical Population Biology 76(2):118–131. Elsevier.

Li, T., and J. J. Anderson. 2013. Shaping human mortality patterns through intrinsic and extrinsic

vitality processes. Demographic research 28:341–372.

Liang, H., and G. Zou. 2008. Improved AIC Selection Strategy for Survival Analysis.

Computational statistics & data analysis 52(5):2538–2548.

Lilliefors, H. W. 1967. On the Kolmogorov-Smirnov test for normality with mean and variance

unknown. Journal of the American statistical Association 62(318):399–402. Taylor & Francis.

McCarthy, M. A., A. M. Gill, and R. A. Bradstock. 2001. Theoretical fire-interval distributions.

International Journal of Wildland Fire 10(1):73.

Passolt, G., J. J. Anderson, T. Li, D. H. Salinger, and D. Sharrow J. 2018. vitality: Fitting

Routines for the Vitality Family of Mortality Models.

Prentice, R. L. 1974. A Log Gamma Model and Its Maximum Likelihood Estimation. Biometrika

61(3):539–544.

Skalski, J. R., and S. L. Whitlock. 2020. Vitality models found useful in modeling tag-failure

times in acoustic-tag survival studies. Animal Biotelemetry 8(1):1–10. BioMed Central.

P a g e | 49

Sokal, R. R., and F. J. Rohlf. 1995. Biometry, 3rd edition. W.H. Freeman and Company, New

York.

Therneau, T. M., and P. M. Grambsch. 2000. Modeling Survival Data: Extending the Cox Model.

Springer Science & Business Media.

Touchon, J. C., and M. W. McCoy. 2016. The mismatch between current statistical practice and

doctoral training in ecology. Ecosphere 7(8):e01394.

Weitkamp, D. E., and M. Katz. 1980. A review of dissolved gas supersaturation literature.

Transactions of the American Fisheries Society 109(6):659–702. Taylor & Francis.

